encompass-cs/encompass-cs/graph/DirectedGraph.cs

417 lines
13 KiB
C#

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
namespace Encompass
{
public enum SearchSymbol
{
start,
finish
}
public class DirectedGraph<T>
{
private class SimpleCycleComparer : IEqualityComparer<IEnumerable<T>>
{
public bool Equals(IEnumerable<T> x, IEnumerable<T> y)
{
return Enumerable.SequenceEqual(x, y);
}
public int GetHashCode(IEnumerable<T> obj)
{
return obj.Aggregate(0, (current, next) => current.GetHashCode() ^ next.GetHashCode());
}
}
protected List<T> _vertices = new List<T>();
protected Dictionary<T, List<T>> _neighbors = new Dictionary<T, List<T>>();
public IEnumerable<T> Vertices { get { return _vertices; } }
/*
* GRAPH STRUCTURE METHODS
*/
public void AddVertex(T vertex)
{
if (!VertexExists(vertex))
{
_vertices.Add(vertex);
_neighbors.Add(vertex, new List<T>());
}
}
public void AddVertices(params T[] vertices)
{
foreach (var vertex in vertices)
{
AddVertex(vertex);
}
}
public bool VertexExists(T vertex)
{
return Vertices.Contains(vertex);
}
public void RemoveVertex(T vertex)
{
var edgesToRemove = new List<Tuple<T, T>>();
if (VertexExists(vertex))
{
foreach (var entry in _neighbors)
{
if (entry.Value.Contains(vertex))
{
edgesToRemove.Add(Tuple.Create(entry.Key, vertex));
}
}
foreach (var edge in edgesToRemove)
{
RemoveEdge(edge.Item1, edge.Item2);
}
_vertices.Remove(vertex);
_neighbors.Remove(vertex);
}
}
public void AddEdge(T v, T u)
{
if (VertexExists(v) && VertexExists(u))
{
_neighbors[v].Add(u);
}
}
public void AddEdges(params Tuple<T, T>[] edges)
{
foreach (var edge in edges)
{
AddEdge(edge.Item1, edge.Item2);
}
}
public void RemoveEdge(T v, T u)
{
_neighbors[v].Remove(u);
}
public IEnumerable<T> Neighbors(T vertex)
{
if (VertexExists(vertex))
{
return _neighbors[vertex];
}
else
{
return Enumerable.Empty<T>();
}
}
/*
* GRAPH ANALYSIS METHODS
*/
public Dictionary<T, Dictionary<SearchSymbol, uint>> NodeDFS()
{
var discovered = new HashSet<T>();
uint time = 0;
var output = new Dictionary<T, Dictionary<SearchSymbol, uint>>();
foreach (var vertex in Vertices)
{
output.Add(vertex, new Dictionary<SearchSymbol, uint>());
}
void dfsHelper(T v)
{
discovered.Add(v);
time += 1;
output[v].Add(SearchSymbol.start, time);
foreach (var neighbor in Neighbors(v))
{
if (!discovered.Contains(neighbor))
{
dfsHelper(neighbor);
}
}
time += 1;
output[v].Add(SearchSymbol.finish, time);
};
foreach (var vertex in Vertices)
{
if (!discovered.Contains(vertex))
{
dfsHelper(vertex);
}
}
return output;
}
public bool Cyclic()
{
return StronglyConnectedComponents().Any((scc) => scc.Count() > 1);
}
public IEnumerable<T> TopologicalSort()
{
var dfs = NodeDFS();
var priority = new SortedList<uint, T>();
foreach (var entry in dfs)
{
priority.Add(entry.Value[SearchSymbol.finish], entry.Key);
}
return priority.Values.Reverse();
}
public IEnumerable<IEnumerable<T>> StronglyConnectedComponents()
{
var preorder = new Dictionary<T, uint>();
var lowlink = new Dictionary<T, uint>();
var sccFound = new Dictionary<T, bool>();
var sccQueue = new Stack<T>();
var result = new List<List<T>>();
uint preorderCounter = 0;
foreach (var source in Vertices)
{
if (!sccFound.ContainsKey(source))
{
var queue = new Stack<T>();
queue.Push(source);
while (queue.Count > 0)
{
var v = queue.Peek();
if (!preorder.ContainsKey(v))
{
preorderCounter += 1;
preorder[v] = preorderCounter;
}
var done = true;
var vNeighbors = Neighbors(v);
foreach (var w in vNeighbors)
{
if (!preorder.ContainsKey(w))
{
queue.Push(w);
done = false;
break;
}
}
if (done)
{
lowlink[v] = preorder[v];
foreach (var w in vNeighbors)
{
if (!sccFound.ContainsKey(w))
{
if (preorder[w] > preorder[v])
{
lowlink[v] = Math.Min(lowlink[v], lowlink[w]);
}
else
{
lowlink[v] = Math.Min(lowlink[v], preorder[w]);
}
}
}
queue.Pop();
if (lowlink[v] == preorder[v])
{
sccFound[v] = true;
var scc = new List<T>();
scc.Add(v);
while (sccQueue.Count > 0 && preorder[sccQueue.Peek()] > preorder[v])
{
var k = sccQueue.Pop();
sccFound[k] = true;
scc.Add(k);
}
result.Add(scc);
}
else
{
sccQueue.Push(v);
}
}
}
}
}
return result;
}
public IEnumerable<IEnumerable<T>> SimpleCycles()
{
void unblock(T thisnode, HashSet<T> blocked, Dictionary<T, HashSet<T>> B)
{
var stack = new Stack<T>();
stack.Push(thisnode);
while (stack.Count > 0)
{
var node = stack.Pop();
if (blocked.Contains(thisnode))
{
blocked.Remove(thisnode);
if (B.ContainsKey(node))
{
foreach (var n in B[node])
{
if (!stack.Contains(n))
{
stack.Push(n);
}
}
B[node].Clear();
}
}
}
};
List<List<T>> result = new List<List<T>>();
var subGraph = Clone();
var sccs = new Stack<IEnumerable<T>>();
foreach (var scc in StronglyConnectedComponents())
{
sccs.Push(scc);
}
while (sccs.Count > 0)
{
var scc = new Stack<T>(sccs.Pop());
var startNode = scc.Pop();
var path = new Stack<T>();
path.Push(startNode);
var blocked = new HashSet<T>();
blocked.Add(startNode);
var closed = new HashSet<T>();
var B = new Dictionary<T, HashSet<T>>();
var stack = new Stack<Tuple<T, Stack<T>>>();
stack.Push(Tuple.Create(startNode, new Stack<T>(subGraph.Neighbors(startNode))));
while (stack.Count > 0)
{
var entry = stack.Peek();
var thisnode = entry.Item1;
var neighbors = entry.Item2;
if (neighbors.Count > 0)
{
var nextNode = neighbors.Pop();
if (nextNode.Equals(startNode))
{
var resultPath = new List<T>();
foreach (var v in path)
{
resultPath.Add(v);
}
result.Add(resultPath);
foreach (var v in path)
{
closed.Add(v);
}
}
else if (!blocked.Contains(nextNode))
{
path.Push(nextNode);
stack.Push(Tuple.Create(nextNode, new Stack<T>(subGraph.Neighbors(nextNode))));
closed.Remove(nextNode);
blocked.Add(nextNode);
continue;
}
}
if (neighbors.Count == 0)
{
if (closed.Contains(thisnode))
{
unblock(thisnode, blocked, B);
}
else
{
foreach (var neighbor in subGraph.Neighbors(thisnode))
{
if (!B.ContainsKey(neighbor))
{
B[neighbor] = new HashSet<T>();
}
B[neighbor].Add(thisnode);
}
}
stack.Pop();
path.Pop();
}
}
subGraph.RemoveVertex(startNode);
var H = subGraph.SubGraph(scc.ToArray());
var HSccs = H.StronglyConnectedComponents();
foreach (var HScc in HSccs)
{
sccs.Push(HScc);
}
}
return result.Distinct(new SimpleCycleComparer());
}
public DirectedGraph<T> Clone()
{
var clone = new DirectedGraph<T>();
clone.AddVertices(Vertices.ToArray());
foreach (var v in Vertices)
{
foreach (var n in Neighbors(v))
{
clone.AddEdge(v, n);
}
}
return clone;
}
public DirectedGraph<T> SubGraph(params T[] subVertices)
{
var subGraph = new DirectedGraph<T>();
subGraph.AddVertices(subVertices.ToArray());
foreach (var v in Vertices)
{
if (Vertices.Contains(v))
{
var neighbors = Neighbors(v);
foreach (var u in neighbors)
{
if (subVertices.Contains(u))
{
subGraph.AddEdge(v, u);
}
}
}
}
return subGraph;
}
}
}