Kav/Effects/HLSL/DeferredPBREffect.fx

236 lines
6.4 KiB
HLSL

#include "Macros.fxh" //from FNA
static const float PI = 3.141592653589793;
static const int MAX_POINT_LIGHTS = 64;
static const int MAX_DIRECTIONAL_LIGHTS = 4;
DECLARE_TEXTURE(gPosition, 0);
DECLARE_TEXTURE(gAlbedo, 1);
DECLARE_TEXTURE(gNormal, 2);
DECLARE_TEXTURE(gMetallicRoughness, 3);
DECLARE_CUBEMAP(shadowMap, 4);
BEGIN_CONSTANTS
float3 EyePosition _ps(c0) _cb(c0);
float3 PointLightPositions[MAX_POINT_LIGHTS] _ps(c1) _cb(c1);
float3 PointLightColors[MAX_POINT_LIGHTS] _ps(c65) _cb(c65);
float3 DirectionalLightDirections[MAX_DIRECTIONAL_LIGHTS] _ps(c129) _cb(c129);
float3 DirectionalLightColors[MAX_DIRECTIONAL_LIGHTS] _ps(c133) _cb(c133);
MATRIX_CONSTANTS
float4x4 DirectionalLightMatrices[MAX_DIRECTIONAL_LIGHTS] _ps(c137) _cb(c137);
END_CONSTANTS
struct PixelInput
{
float4 Position : SV_POSITION;
float2 TexCoord : TEXCOORD0;
};
// Pixel Shader
float3 FresnelSchlick(float cosTheta, float3 F0)
{
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
float DistributionGGX(float3 N, float3 H, float roughness)
{
float a = roughness * roughness;
float a2 = a * a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH * NdotH;
float num = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return num / denom;
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.0);
float k = (r * r) / 8.0;
float num = NdotV;
float denom = NdotV * (1.0 - k) + k;
return num / denom;
}
float GeometrySmith(float3 N, float3 V, float3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
float3 ConvertCubeUVToXYZ(int index, float u, float v)
{
float uc = 2.0 * u - 1.0;
float vc = 2.0 * v - 1.0;
if (index == 0) { return float3(1.0, vc, -uc); }
if (index == 1) { return float3(-1.0, vc, uc); }
if (index == 2) { return float3(uc, 1.0, -vc); }
if (index == 3) { return float3(uc, -1.0, vc); }
if (index == 4) { return float3(uc, vc, -1.0); }
if (index == 5) { return float3(-uc, vc, 1.0); }
return float3(1.0, 0.0, 0.5);
}
float ComputeShadow(float4 positionLightSpace, int directionalLightIndex)
{
float bias = 0.001;
// maps to [-1, 1]
float3 projectionCoords = positionLightSpace.xyz / positionLightSpace.w;
float3 cubeMapSampleVector;
if (directionalLightIndex == 0)
{
cubeMapSampleVector = float3(1.0f, projectionCoords.y, -projectionCoords.x);
}
else if (directionalLightIndex == 1)
{
cubeMapSampleVector = float3(-1.0f, projectionCoords.y, projectionCoords.x);
}
else if (directionalLightIndex == 2)
{
cubeMapSampleVector = float3(projectionCoords.x, 1.0f, projectionCoords.y);
}
else if (directionalLightIndex == 3)
{
cubeMapSampleVector = float3(projectionCoords.x, -1.0f, -projectionCoords.y);
}
else if (directionalLightIndex == 4)
{
cubeMapSampleVector = float3(projectionCoords.x, projectionCoords.y, 1.0);
}
else
{
cubeMapSampleVector = float3(-projectionCoords.x, projectionCoords.y, -1.0);
}
float closestDepth = SAMPLE_CUBEMAP(shadowMap, cubeMapSampleVector).r;
float currentDepth = projectionCoords.z;
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
return shadow;
}
float3 ComputeLight(
float3 lightDir,
float3 radiance,
float3 F0,
float3 V,
float3 N,
float3 albedo,
float metallic,
float roughness,
float shadow
) {
float3 L = normalize(lightDir);
float3 H = normalize(V + L);
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
float3 F = FresnelSchlick(max(dot(H, V), 0.0), F0);
float3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0);
float3 specular = numerator / max(denominator, 0.001);
float3 kS = F;
float3 kD = float3(1.0, 1.0, 1.0) - kS;
kD *= 1.0 - metallic;
float NdotL = max(dot(N, L), 0.0);
return (kD * albedo / PI + specular) * radiance * NdotL * shadow;
}
float4 ComputeColor(
float3 worldPosition,
float3 worldNormal,
float3 albedo,
float metallic,
float roughness
) {
float3 V = normalize(EyePosition - worldPosition);
float3 N = normalize(worldNormal);
float3 F0 = float3(0.04, 0.04, 0.04);
F0 = lerp(F0, albedo, metallic);
float3 Lo = float3(0.0, 0.0, 0.0);
// point light
for (int i = 0; i < MAX_POINT_LIGHTS; i++)
{
float3 lightDir = PointLightPositions[i] - worldPosition;
float distance = length(lightDir);
float attenuation = 1.0 / (distance * distance);
float3 radiance = PointLightColors[i] * attenuation;
Lo += ComputeLight(lightDir, radiance, F0, V, N, albedo, metallic, roughness, 1.0);
}
// directional light
for (int i = 0; i < 1; i++)
{
float4 positionLightSpace = mul(float4(worldPosition, 1.0), DirectionalLightMatrices[i]);
float shadow = ComputeShadow(positionLightSpace, i);
float3 lightDir = DirectionalLightDirections[i];
float3 radiance = DirectionalLightColors[i];
Lo += ComputeLight(lightDir, radiance, F0, V, N, albedo, metallic, roughness, (1.0 - shadow));
}
float3 ambient = float3(0.03, 0.03, 0.03) * albedo; // * AO;
float3 color = ambient + Lo;
color = color / (color + float3(1.0, 1.0, 1.0));
float exposureConstant = 1.0 / 2.2;
color = pow(color, float3(exposureConstant, exposureConstant, exposureConstant));
return float4(color, 1.0);
}
float4 main_ps(PixelInput input) : SV_TARGET0
{
float3 worldPosition = SAMPLE_TEXTURE(gPosition, input.TexCoord).rgb;
float3 normal = SAMPLE_TEXTURE(gNormal, input.TexCoord).xyz;
float3 albedo = SAMPLE_TEXTURE(gAlbedo, input.TexCoord).rgb;
float2 metallicRoughness = SAMPLE_TEXTURE(gMetallicRoughness, input.TexCoord).rg;
return ComputeColor(
worldPosition,
normal,
albedo,
metallicRoughness.r,
metallicRoughness.g
);
}
Technique DeferredPBR
{
Pass
{
PixelShader = compile ps_3_0 main_ps();
}
}