#include "Macros.fxh" //from FNA static const float PI = 3.141592653589793; static const int MAX_POINT_LIGHTS = 64; static const int MAX_DIRECTIONAL_LIGHTS = 4; DECLARE_TEXTURE(gPosition, 0); DECLARE_TEXTURE(gAlbedo, 1); DECLARE_TEXTURE(gNormal, 2); DECLARE_TEXTURE(gMetallicRoughness, 3); DECLARE_CUBEMAP(shadowMap, 4); BEGIN_CONSTANTS float3 EyePosition _ps(c0) _cb(c0); float3 PointLightPositions[MAX_POINT_LIGHTS] _ps(c1) _cb(c1); float3 PointLightColors[MAX_POINT_LIGHTS] _ps(c65) _cb(c65); float3 DirectionalLightDirections[MAX_DIRECTIONAL_LIGHTS] _ps(c129) _cb(c129); float3 DirectionalLightColors[MAX_DIRECTIONAL_LIGHTS] _ps(c133) _cb(c133); MATRIX_CONSTANTS float4x4 DirectionalLightMatrices[MAX_DIRECTIONAL_LIGHTS] _ps(c137) _cb(c137); END_CONSTANTS struct PixelInput { float4 Position : SV_POSITION; float2 TexCoord : TEXCOORD0; }; // Pixel Shader float3 FresnelSchlick(float cosTheta, float3 F0) { return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); } float DistributionGGX(float3 N, float3 H, float roughness) { float a = roughness * roughness; float a2 = a * a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH * NdotH; float num = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return num / denom; } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r * r) / 8.0; float num = NdotV; float denom = NdotV * (1.0 - k) + k; return num / denom; } float GeometrySmith(float3 N, float3 V, float3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } float3 ConvertCubeUVToXYZ(int index, float u, float v) { float uc = 2.0 * u - 1.0; float vc = 2.0 * v - 1.0; if (index == 0) { return float3(1.0, vc, -uc); } if (index == 1) { return float3(-1.0, vc, uc); } if (index == 2) { return float3(uc, 1.0, -vc); } if (index == 3) { return float3(uc, -1.0, vc); } if (index == 4) { return float3(uc, vc, -1.0); } if (index == 5) { return float3(-uc, vc, 1.0); } return float3(1.0, 0.0, 0.5); } float ComputeShadow(float4 positionLightSpace, int directionalLightIndex) { float bias = 0.001; // maps to [-1, 1] float3 projectionCoords = positionLightSpace.xyz / positionLightSpace.w; float3 cubeMapSampleVector; if (directionalLightIndex == 0) { cubeMapSampleVector = float3(1.0f, projectionCoords.y, -projectionCoords.x); } else if (directionalLightIndex == 1) { cubeMapSampleVector = float3(-1.0f, projectionCoords.y, projectionCoords.x); } else if (directionalLightIndex == 2) { cubeMapSampleVector = float3(projectionCoords.x, 1.0f, projectionCoords.y); } else if (directionalLightIndex == 3) { cubeMapSampleVector = float3(projectionCoords.x, -1.0f, -projectionCoords.y); } else if (directionalLightIndex == 4) { cubeMapSampleVector = float3(projectionCoords.x, projectionCoords.y, 1.0); } else { cubeMapSampleVector = float3(-projectionCoords.x, projectionCoords.y, -1.0); } float closestDepth = SAMPLE_CUBEMAP(shadowMap, cubeMapSampleVector).r; float currentDepth = projectionCoords.z; float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0; return shadow; } float3 ComputeLight( float3 lightDir, float3 radiance, float3 F0, float3 V, float3 N, float3 albedo, float metallic, float roughness, float shadow ) { float3 L = normalize(lightDir); float3 H = normalize(V + L); float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); float3 F = FresnelSchlick(max(dot(H, V), 0.0), F0); float3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0); float3 specular = numerator / max(denominator, 0.001); float3 kS = F; float3 kD = float3(1.0, 1.0, 1.0) - kS; kD *= 1.0 - metallic; float NdotL = max(dot(N, L), 0.0); return (kD * albedo / PI + specular) * radiance * NdotL * shadow; } float4 ComputeColor( float3 worldPosition, float3 worldNormal, float3 albedo, float metallic, float roughness ) { float3 V = normalize(EyePosition - worldPosition); float3 N = normalize(worldNormal); float3 F0 = float3(0.04, 0.04, 0.04); F0 = lerp(F0, albedo, metallic); float3 Lo = float3(0.0, 0.0, 0.0); // point light for (int i = 0; i < MAX_POINT_LIGHTS; i++) { float3 lightDir = PointLightPositions[i] - worldPosition; float distance = length(lightDir); float attenuation = 1.0 / (distance * distance); float3 radiance = PointLightColors[i] * attenuation; Lo += ComputeLight(lightDir, radiance, F0, V, N, albedo, metallic, roughness, 1.0); } // directional light for (int i = 0; i < 1; i++) { float4 positionLightSpace = mul(float4(worldPosition, 1.0), DirectionalLightMatrices[i]); float shadow = ComputeShadow(positionLightSpace, i); float3 lightDir = DirectionalLightDirections[i]; float3 radiance = DirectionalLightColors[i]; Lo += ComputeLight(lightDir, radiance, F0, V, N, albedo, metallic, roughness, (1.0 - shadow)); } float3 ambient = float3(0.03, 0.03, 0.03) * albedo; // * AO; float3 color = ambient + Lo; color = color / (color + float3(1.0, 1.0, 1.0)); float exposureConstant = 1.0 / 2.2; color = pow(color, float3(exposureConstant, exposureConstant, exposureConstant)); return float4(color, 1.0); } float4 main_ps(PixelInput input) : SV_TARGET0 { float3 worldPosition = SAMPLE_TEXTURE(gPosition, input.TexCoord).rgb; float3 normal = SAMPLE_TEXTURE(gNormal, input.TexCoord).xyz; float3 albedo = SAMPLE_TEXTURE(gAlbedo, input.TexCoord).rgb; float2 metallicRoughness = SAMPLE_TEXTURE(gMetallicRoughness, input.TexCoord).rg; return ComputeColor( worldPosition, normal, albedo, metallicRoughness.r, metallicRoughness.g ); } Technique DeferredPBR { Pass { PixelShader = compile ps_3_0 main_ps(); } }