trying stuff but the shading still seems to be model-relative

PBR
Evan Hemsley 2020-08-01 03:23:20 -07:00
parent 37b45caea2
commit 4b36860b62
6 changed files with 743 additions and 550 deletions

View File

@ -5,48 +5,81 @@ namespace Smuggler
{
public struct PBRLight
{
public Vector3 direction;
public Vector3 colour;
public Vector3 position;
public Vector3 color;
public PBRLight(Vector3 direction, Vector3 colour)
public PBRLight(Vector3 position, Vector3 colour)
{
this.direction = direction;
this.colour = colour;
this.position = position;
this.color = colour;
}
}
public class PBRLightCollection
{
private readonly Vector3[] positions = new Vector3[4];
private readonly Vector3[] colors = new Vector3[4];
readonly EffectParameter lightPositionsParam;
readonly EffectParameter lightColorsParam;
public PBRLightCollection(EffectParameter lightPositionsParam, EffectParameter lightColorsParam)
{
this.lightPositionsParam = lightPositionsParam;
this.lightColorsParam = lightColorsParam;
}
public PBRLight this[int i]
{
get { return new PBRLight(positions[i], colors[i]); }
set
{
positions[i] = value.position;
colors[i] = value.color;
lightPositionsParam.SetValue(positions);
lightColorsParam.SetValue(colors);
}
}
}
public class PBREffect : Effect
{
readonly EffectParameter modelParam;
readonly EffectParameter viewParam;
readonly EffectParameter projectionParam;
readonly EffectParameter lightDirParam;
readonly EffectParameter lightColourParam;
readonly EffectParameter normalScaleParam;
readonly EffectParameter emissiveFactorParam;
readonly EffectParameter occlusionStrengthParam;
readonly EffectParameter metallicRoughnessValuesParam;
readonly EffectParameter baseColorFactorParam;
readonly EffectParameter cameraLookParam;
EffectParameter worldParam;
EffectParameter viewParam;
EffectParameter projectionParam;
EffectParameter worldViewProjectionParam;
EffectParameter worldInverseTransposeParam;
readonly EffectParameter baseColourTextureParam;
readonly EffectParameter normalTextureParam;
readonly EffectParameter emissionTextureParam;
readonly EffectParameter occlusionTextureParam;
readonly EffectParameter metallicRoughnessTextureParam;
readonly EffectParameter envDiffuseTextureParam;
readonly EffectParameter brdfLutTextureParam;
readonly EffectParameter envSpecularTextureParam;
EffectParameter baseColorTextureParam;
EffectParameter normalTextureParam;
EffectParameter emissionTextureParam;
EffectParameter occlusionTextureParam;
EffectParameter metallicRoughnessTextureParam;
EffectParameter envDiffuseTextureParam;
EffectParameter brdfLutTextureParam;
EffectParameter envSpecularTextureParam;
EffectParameter lightPositionsParam;
EffectParameter lightColorsParam;
EffectParameter albedoParam;
EffectParameter metallicParam;
EffectParameter roughnessParam;
EffectParameter aoParam;
EffectParameter eyePositionParam;
Matrix world = Matrix.Identity;
Matrix view = Matrix.Identity;
Matrix projection = Matrix.Identity;
PBRLight light = new PBRLight();
float normalScale = 1;
Vector3 emissiveFactor;
float occlusionStrength;
Vector2 metallicRoughnessValue;
Vector4 baseColorFactor;
PBRLightCollection pbrLightCollection;
Vector3 albedo;
float metallic;
float roughness;
float ao;
// FIXME: lazily set properties for performance
public Matrix World
{
@ -54,7 +87,9 @@ namespace Smuggler
set
{
world = value;
modelParam.SetValue(world);
worldParam.SetValue(world);
worldViewProjectionParam.SetValue(world * view * projection);
worldInverseTransposeParam.SetValue(Matrix.Transpose(Matrix.Invert(world)));
}
}
@ -65,11 +100,8 @@ namespace Smuggler
{
view = value;
viewParam.SetValue(view);
cameraLookParam.SetValue(-new Vector3(
view.M13,
view.M23,
view.M33
));
worldViewProjectionParam.SetValue(world * view * projection);
eyePositionParam.SetValue(Matrix.Invert(view).Translation);
}
}
@ -79,75 +111,61 @@ namespace Smuggler
set
{
projection = value;
projectionParam.SetValue(value);
projectionParam.SetValue(projection);
worldViewProjectionParam.SetValue(world * view * projection);
}
}
public PBRLight Light
public PBRLightCollection Lights
{
get { return light; }
set
{
light = value;
lightDirParam.SetValue(light.direction);
lightColourParam.SetValue(light.colour);
}
get { return pbrLightCollection; }
internal set { pbrLightCollection = value; }
}
public float NormalScale
public Vector3 Albedo
{
get { return normalScale; }
get { return albedo; }
set
{
normalScale = value;
normalScaleParam.SetValue(normalScale);
albedo = value;
albedoParam.SetValue(albedo);
}
}
public Vector3 EmissiveFactor
public float Metallic
{
get { return emissiveFactor; }
set
{
emissiveFactor = value;
emissiveFactorParam.SetValue(emissiveFactor);
}
}
public float OcclusionStrength
{
get { return occlusionStrength; }
get { return metallic; }
set
{
occlusionStrength = value;
occlusionStrengthParam.SetValue(occlusionStrength);
metallic = value;
metallicParam.SetValue(metallic);
}
}
public Vector2 MetallicRoughnessValue
public float Roughness
{
get { return metallicRoughnessValue; }
get { return roughness; }
set
{
metallicRoughnessValue = value;
metallicRoughnessValuesParam.SetValue(metallicRoughnessValue);
roughness = value;
roughnessParam.SetValue(roughness);
}
}
public Vector4 BaseColorFactor
public float AO
{
get { return baseColorFactor; }
get { return ao; }
set
{
baseColorFactor = value;
baseColorFactorParam.SetValue(baseColorFactor);
ao = value;
aoParam.SetValue(ao);
}
}
public Texture2D BaseColourTexture
{
get { return baseColourTextureParam.GetValueTexture2D(); }
set { baseColourTextureParam.SetValue(value); }
get { return baseColorTextureParam.GetValueTexture2D(); }
set { baseColorTextureParam.SetValue(value); }
}
public Texture2D NormalTexture
@ -194,66 +212,31 @@ namespace Smuggler
public PBREffect(GraphicsDevice graphicsDevice) : base(graphicsDevice, Resources.PBREffect)
{
modelParam = Parameters["model"];
viewParam = Parameters["view"];
projectionParam = Parameters["projection"];
CacheEffectParameters(null);
lightDirParam = Parameters["lightDir"];
lightColourParam = Parameters["lightColour"];
normalScaleParam = Parameters["normalScale"];
emissiveFactorParam = Parameters["emissiveFactor"];
occlusionStrengthParam = Parameters["occlusionStrength"];
metallicRoughnessValuesParam = Parameters["metallicRoughnessValues"];
baseColorFactorParam = Parameters["baseColorFactor"];
cameraLookParam = Parameters["camera"];
baseColourTextureParam = Parameters["baseColourTexture"];
normalTextureParam = Parameters["normalTexture"];
emissionTextureParam = Parameters["emissionTexture"];
occlusionTextureParam = Parameters["occlusionTexture"];
metallicRoughnessTextureParam = Parameters["metallicRoughnessTexture"];
envDiffuseTextureParam = Parameters["envDiffuseTexture"];
brdfLutTextureParam = Parameters["brdfLutTexture"];
envSpecularTextureParam = Parameters["envSpecularTexture"];
pbrLightCollection = new PBRLightCollection(
Parameters["LightPositions"],
Parameters["LightColors"]
);
}
protected PBREffect(PBREffect cloneSource) : base(cloneSource)
{
modelParam = Parameters["model"];
viewParam = Parameters["view"];
projectionParam = Parameters["param"];
lightDirParam = Parameters["lightDir"];
lightColourParam = Parameters["lightColour"];
normalScaleParam = Parameters["normalScale"];
emissiveFactorParam = Parameters["emissiveFactor"];
occlusionStrengthParam = Parameters["occlusionStrength"];
metallicRoughnessValuesParam = Parameters["metallicRoughnessValues"];
baseColorFactorParam = Parameters["baseColorFactor"];
cameraLookParam = Parameters["camera"];
baseColourTextureParam = Parameters["baseColourTexture"];
normalTextureParam = Parameters["normalTexture"];
emissionTextureParam = Parameters["emissionTexture"];
occlusionTextureParam = Parameters["occlusionTexture"];
metallicRoughnessTextureParam = Parameters["metallicRoughnessTexture"];
envDiffuseTextureParam = Parameters["envDiffuseTexture"];
brdfLutTextureParam = Parameters["brdfLutTexture"];
envSpecularTextureParam = Parameters["envSpecularTexture"];
CacheEffectParameters(cloneSource);
World = cloneSource.World;
View = cloneSource.View;
Projection = cloneSource.Projection;
Light = cloneSource.Light;
Lights = new PBRLightCollection(
Parameters["LightPositions"],
Parameters["LightColors"]
);
NormalScale = cloneSource.normalScale;
EmissiveFactor = cloneSource.EmissiveFactor;
OcclusionStrength = cloneSource.OcclusionStrength;
MetallicRoughnessValue = cloneSource.MetallicRoughnessValue;
BaseColorFactor = cloneSource.BaseColorFactor;
for (int i = 0; i < 4; i++)
{
Lights[i] = cloneSource.Lights[i];
}
BaseColourTexture = cloneSource.BaseColourTexture;
NormalTexture = cloneSource.NormalTexture;
@ -263,6 +246,11 @@ namespace Smuggler
EnvDiffuseTexture = cloneSource.EnvDiffuseTexture;
BRDFLutTexture = cloneSource.BRDFLutTexture;
EnvSpecularTexture = cloneSource.EnvSpecularTexture;
Albedo = cloneSource.Albedo;
Metallic = cloneSource.Metallic;
Roughness = cloneSource.Roughness;
AO = cloneSource.AO;
}
public override Effect Clone()
@ -275,5 +263,33 @@ namespace Smuggler
{
base.OnApply();
}
void CacheEffectParameters(PBREffect cloneSource)
{
worldParam = Parameters["World"];
viewParam = Parameters["View"];
projectionParam = Parameters["Projection"];
worldViewProjectionParam = Parameters["WorldViewProjection"];
worldInverseTransposeParam = Parameters["WorldInverseTranspose"];
baseColorTextureParam = Parameters["BaseColorTexture"];
normalTextureParam = Parameters["NormalTexture"];
emissionTextureParam = Parameters["EmissionTexture"];
occlusionTextureParam = Parameters["OcclusionTexture"];
metallicRoughnessTextureParam = Parameters["MetallicRoughnessTexture"];
envDiffuseTextureParam = Parameters["EnvDiffuseTexture"];
brdfLutTextureParam = Parameters["BrdfLutTexture"];
envSpecularTextureParam = Parameters["EnvSpecularTexture"];
lightPositionsParam = Parameters["LightPositions"];
lightColorsParam = Parameters["LightColors"];
albedoParam = Parameters["Albedo"];
metallicParam = Parameters["Metallic"];
roughnessParam = Parameters["Roughness"];
aoParam = Parameters["AO"];
eyePositionParam = Parameters["EyePosition"];
}
}
}

View File

@ -1,408 +1,159 @@
#include "Macros.fxh" //from FNA
#include "Macros.fxh"
static const float PI = 3.141592653589793;
#define NORMALS
#define UV
// Transformation Matrices
// A constant buffer that stores the three basic column-major matrices for composing geometry.
cbuffer ModelViewProjectionConstantBuffer : register(b0)
{
matrix model;
matrix view;
matrix projection;
};
float4x4 World;
float4x4 View;
float4x4 Projection;
float4x4 WorldViewProjection;
float4x3 WorldInverseTranspose;
// Samplers
DECLARE_TEXTURE(BaseColorTexture, 0);
DECLARE_TEXTURE(NormalTexture, 1);
DECLARE_TEXTURE(EmissionTexture, 2);
DECLARE_TEXTURE(OcclusionTexture, 3);
DECLARE_TEXTURE(MetallicRoughnessTexture, 4);
DECLARE_CUBEMAP(EnvDiffuseTexture, 8);
DECLARE_TEXTURE(BrdfLutTexture, 9);
DECLARE_CUBEMAP(EnvSpecularTexture, 10);
// Light Info
float3 LightPositions[4];
float3 LightColors[4];
// PBR Values
float3 Albedo;
float Metallic;
float Roughness;
float AO;
float3 EyePosition;
// Per-vertex data used as input to the vertex shader.
struct VertexShaderInput
{
float4 position : POSITION;
#ifdef NORMALS
float3 normal : NORMAL;
#endif
#ifdef UV
float2 texcoord : TEXCOORD0;
#endif
float4 Position : POSITION;
float3 Normal : NORMAL;
float2 TexCoord : TEXCOORD0;
};
// Per-pixel color data passed through the pixel shader.
struct PixelShaderInput
{
float4 position : SV_POSITION;
float3 poswithoutw : POSITION1;
#ifdef NORMALS
float3 normal : NORMAL;
#endif
float2 texcoord : TEXCOORD0;
float4 Position : SV_POSITION;
float2 TexCoord : TEXCOORD0;
float3 PositionWS : TEXCOORD1;
float3 NormalWS : TEXCOORD2;
};
PixelShaderInput main_vs(VertexShaderInput input)
{
PixelShaderInput output;
// Transform the vertex position into projected space.
float4 pos = mul(input.position, model);
output.poswithoutw = float3(pos.xyz) / pos.w;
#ifdef NORMALS
// If we have normals...
output.normal = normalize(mul(float4(input.normal.xyz, 0.0), model));
#endif
#ifdef UV
output.texcoord = input.texcoord;
#else
output.texcoord = float2(0.0f, 0.0f);
#endif
#ifdef HAS_NORMALS
#ifdef HAS_TANGENTS
vec3 normalW = normalize(vec3(u_ModelMatrix * vec4(a_Normal.xyz, 0.0)));
vec3 tangentW = normalize(vec3(u_ModelMatrix * vec4(a_Tangent.xyz, 0.0)));
vec3 bitangentW = cross(normalW, tangentW) * a_Tangent.w;
v_TBN = mat3(tangentW, bitangentW, normalW);
#else // HAS_TANGENTS != 1
v_Normal = normalize(vec3(u_ModelMatrix * vec4(a_Normal.xyz, 0.0)));
#endif
#endif
// Transform the vertex position into projected space.
pos = mul(pos, view);
pos = mul(pos, projection);
output.position = pos;
output.PositionWS = mul(input.Position, World).xyz;
output.TexCoord = input.TexCoord;
output.NormalWS = normalize(mul(WorldInverseTranspose, input.Normal));
output.Position = mul(input.Position, WorldViewProjection);
return output;
}
//
// This fragment shader defines a reference implementation for Physically Based Shading of
// a microfacet surface material defined by a glTF model.
//
// References:
// [1] Real Shading in Unreal Engine 4
// http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
// [2] Physically Based Shading at Disney
// http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
// [3] README.md - Environment Maps
// https://github.com/KhronosGroup/glTF-WebGL-PBR/#environment-maps
// [4] "An Inexpensive BRDF Model for Physically based Rendering" by Christophe Schlick
// https://www.cs.virginia.edu/~jdl/bib/appearance/analytic%20models/schlick94b.pdf
#define NORMALS
#define UV
#define HAS_NORMALS
// #define USE_IBL
#define USE_TEX_LOD
DECLARE_TEXTURE(baseColourTexture, 0);
DECLARE_TEXTURE(normalTexture, 1);
DECLARE_TEXTURE(emissionTexture, 2);
DECLARE_TEXTURE(occlusionTexture, 3);
DECLARE_TEXTURE(metallicRoughnessTexture, 4);
DECLARE_CUBEMAP(envDiffuseTexture, 8);
DECLARE_TEXTURE(brdfLutTexture, 9);
DECLARE_CUBEMAP(envSpecularTexture, 10);
cbuffer cbPerFrame : register(b0)
float3 FresnelSchlick(float cosTheta, float3 F0)
{
float3 lightDir;
float3 lightColour;
};
cbuffer cbPerObject : register(b1)
{
float normalScale;
float3 emissiveFactor;
float occlusionStrength;
float2 metallicRoughnessValues;
float4 baseColorFactor;
float3 camera;
// debugging flags used for shader output of intermediate PBR variables
float4 scaleDiffBaseMR;
float4 scaleFGDSpec;
float4 scaleIBLAmbient;
};
#ifdef HAS_NORMALS
#ifdef HAS_TANGENTS
varying mat3 v_TBN;
#else
#endif
#endif
// Encapsulate the various inputs used by the various functions in the shading equation
// We store values in this struct to simplify the integration of alternative implementations
// of the shading terms, outlined in the Readme.MD Appendix.
struct PBRInfo
{
float NdotL; // cos angle between normal and light direction
float NdotV; // cos angle between normal and view direction
float NdotH; // cos angle between normal and half vector
float LdotH; // cos angle between light direction and half vector
float VdotH; // cos angle between view direction and half vector
float perceptualRoughness; // roughness value, as authored by the model creator (input to shader)
float metalness; // metallic value at the surface
float3 reflectance0; // full reflectance color (normal incidence angle)
float3 reflectance90; // reflectance color at grazing angle
float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2])
float3 diffuseColor; // color contribution from diffuse lighting
float3 specularColor; // color contribution from specular lighting
};
static const float M_PI = 3.141592653589793;
static const float c_MinRoughness = 0.04;
float4 SRGBtoLINEAR(float4 srgbIn)
{
#ifdef MANUAL_SRGB
#ifdef SRGB_FAST_APPROXIMATION
float3 linOut = pow(srgbIn.xyz,float3(2.2, 2.2, 2.2));
#else //SRGB_FAST_APPROXIMATION
float3 bLess = step(float3(0.04045, 0.04045, 0.04045), srgbIn.xyz);
float3 linOut = lerp(srgbIn.xyz / float3(12.92, 12.92, 12.92), pow((srgbIn.xyz + float3(0.055, 0.055, 0.055)) / float3(1.055, 1.055, 1.055), float3(2.4, 2.4, 2.4)), bLess);
#endif //SRGB_FAST_APPROXIMATION
return float4(linOut,srgbIn.w);;
#else //MANUAL_SRGB
return srgbIn;
#endif //MANUAL_SRGB
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
// Find the normal for this fragment, pulling either from a predefined normal map
// or from the interpolated mesh normal and tangent attributes.
float3 getNormal(float3 position, float3 normal, float2 uv)
float DistributionGGX(float3 N, float3 H, float roughness)
{
// Retrieve the tangent space matrix
#ifndef HAS_TANGENTS
float3 pos_dx = ddx(position);
float3 pos_dy = ddy(position);
float3 tex_dx = ddx(float3(uv, 0.0));
float3 tex_dy = ddy(float3(uv, 0.0));
float3 t = (tex_dy.y * pos_dx - tex_dx.y * pos_dy) / (tex_dx.x * tex_dy.y - tex_dy.x * tex_dx.y);
float a = roughness * roughness;
float a2 = a * a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH * NdotH;
#ifdef HAS_NORMALS
float3 ng = normalize(normal);
#else
float3 ng = cross(pos_dx, pos_dy);
#endif
float num = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
t = normalize(t - ng * dot(ng, t));
float3 b = normalize(cross(ng, t));
row_major float3x3 tbn = float3x3(t, b, ng);
#else // HAS_TANGENTS
mat3 tbn = v_TBN;
#endif
#ifdef HAS_NORMALMAP
float3 n = SAMPLE_TEXTURE(normalTexture, uv).rgb;
// Need to check the multiplication is equivalent..
n = normalize(mul(((2.0 * n - 1.0) * float3(normalScale, normalScale, 1.0)), tbn));
#else
float3 n = tbn[2].xyz;
#endif
return n;
return num / denom;
}
#ifdef USE_IBL
// Calculation of the lighting contribution from an optional Image Based Light source.
// Precomputed Environment Maps are required uniform inputs and are computed as outlined in [1].
// See our README.md on Environment Maps [3] for additional discussion.
float3 getIBLContribution(PBRInfo pbrInputs, float3 n, float3 reflection)
float GeometrySchlickGGX(float NdotV, float roughness)
{
float mipCount = 9.0; // resolution of 512x512
float lod = (pbrInputs.perceptualRoughness * mipCount);
// retrieve a scale and bias to F0. See [1], Figure 3
float2 val = float2(pbrInputs.NdotV, 1.0 - pbrInputs.perceptualRoughness);
float3 brdf = SRGBtoLINEAR(SAMPLE_TEXTURE(brdfLutTexture, val)).rgb;
float r = (roughness + 1.0);
float k = (r * r) / 8.0;
float3 diffuseLight = SRGBtoLINEAR(SAMPLE_CUBEMAP(envDiffuseTexture, n)).rgb;
float num = NdotV;
float denom = NdotV * (1.0 - k) + k;
#ifdef USE_TEX_LOD
float4 reflectionWithLOD = float4(reflection, 0);
float3 specularLight = SRGBtoLINEAR(SAMPLE_CUBEMAP_LOD(envSpecularTexture, reflectionWithLOD)).rgb;
#else
float3 specularLight = SRGBtoLINEAR(SAMPLE_CUBEMAP(envSpecularTexture, reflection)).rgb;
#endif
float3 diffuse = diffuseLight * pbrInputs.diffuseColor;
float3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y);
// For presentation, this allows us to disable IBL terms
diffuse *= scaleIBLAmbient.x;
specular *= scaleIBLAmbient.y;
return diffuse + specular;
}
#endif
// Basic Lambertian diffuse
// Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog
// See also [1], Equation 1
float3 diffuse(PBRInfo pbrInputs)
{
return pbrInputs.diffuseColor / M_PI;
return num / denom;
}
// The following equation models the Fresnel reflectance term of the spec equation (aka F())
// Implementation of fresnel from [4], Equation 15
float3 specularReflection(PBRInfo pbrInputs)
float GeometrySmith(float3 N, float3 V, float3 L, float roughness)
{
return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0);
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
// This calculates the specular geometric attenuation (aka G()),
// where rougher material will reflect less light back to the viewer.
// This implementation is based on [1] Equation 4, and we adopt their modifications to
// alphaRoughness as input as originally proposed in [2].
float geometricOcclusion(PBRInfo pbrInputs)
// The case where we have no texture maps for any PBR data
float4 None(PixelShaderInput input) : SV_TARGET
{
float NdotL = pbrInputs.NdotL;
float NdotV = pbrInputs.NdotV;
float r = pbrInputs.alphaRoughness;
float3 N = normalize(input.NormalWS);
float3 V = normalize(EyePosition - input.PositionWS);
float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL)));
float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV)));
return attenuationL * attenuationV;
}
float3 Lo = float3(0.0, 0.0, 0.0);
// The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D())
// Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz
// Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3.
float microfacetDistribution(PBRInfo pbrInputs)
{
float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness;
float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0;
return roughnessSq / (M_PI * f * f);
}
for (int i = 0; i < 4; i++)
{
float3 lightDir = LightPositions[i] - input.PositionWS;
float3 L = normalize(lightDir);
float3 H = normalize(V + L);
float4 main_ps(PixelShaderInput input) : SV_TARGET
{
// Metallic and Roughness material properties are packed together
// In glTF, these factors can be specified by fixed scalar values
// or from a metallic-roughness map
float perceptualRoughness = metallicRoughnessValues.y;
float metallic = metallicRoughnessValues.x;
float distance = length(lightDir);
float attenuation = 1.0 / (distance * distance);
float3 radiance = LightColors[i] * attenuation;
#ifdef HAS_METALROUGHNESSMAP
// Roughness is stored in the 'g' channel, metallic is stored in the 'b' channel.
// This layout intentionally reserves the 'r' channel for (optional) occlusion map data
float4 mrSample = SAMPLE_TEXTURE(metallicRoughnessTexture, input.texcoord);
float3 F0 = float3(0.04, 0.04, 0.04);
F0 = lerp(F0, Albedo, Metallic);
float3 F = FresnelSchlick(max(dot(H, V), 0.0), F0);
// Had to reverse the order of the channels here - TODO: investigate..
perceptualRoughness = mrSample.g * perceptualRoughness;
metallic = mrSample.b * metallic;
#endif
float NDF = DistributionGGX(N, H, Roughness);
float G = GeometrySmith(N, V, L, Roughness);
perceptualRoughness = clamp(perceptualRoughness, c_MinRoughness, 1.0);
metallic = clamp(metallic, 0.0, 1.0);
float3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0);
float3 specular = numerator / max(denominator, 0.001);
// Roughness is authored as perceptual roughness; as is convention,
// convert to material roughness by squaring the perceptual roughness [2].
float alphaRoughness = perceptualRoughness * perceptualRoughness;
float3 kS = F;
float3 kD = float3(1.0, 1.0, 1.0) - kS;
// The albedo may be defined from a base texture or a flat color
kD *= 1.0 - Metallic;
#ifdef HAS_BASECOLORMAP
float4 baseColor = SRGBtoLINEAR(SAMPLE_TEXTURE(baseColourTexture, input.texcoord)) * baseColorFactor;
#else
float4 baseColor = baseColorFactor;
#endif
float NdotL = max(dot(N, L), 0.0);
Lo += (kD * Albedo / PI + specular) * radiance * NdotL;
}
float3 f0 = float3(0.04, 0.04, 0.04);
float3 diffuseColor = baseColor.rgb * (float3(1.0, 1.0, 1.0) - f0);
float3 ambient = float3(0.03, 0.03, 0.03) * Albedo * AO;
float3 color = ambient + Lo;
diffuseColor *= 1.0 - metallic;
float3 specularColor = lerp(f0, baseColor.rgb, metallic);
// Compute reflectance.
float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b);
// For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect.
// For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%.
float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0);
float3 specularEnvironmentR0 = specularColor.rgb;
float3 specularEnvironmentR90 = float3(1.0, 1.0, 1.0) * reflectance90;
float3 n = getNormal(input.poswithoutw, input.normal, input.texcoord); // normal at surface point
float3 v = normalize(camera - input.poswithoutw); // Vector from surface point to camera
float3 l = normalize(lightDir); // Vector from surface point to light
float3 h = normalize(l + v); // Half vector between both l and v
float3 reflection = -normalize(reflect(v, n));
float NdotL = clamp(dot(n, l), 0.001, 1.0);
float NdotV = abs(dot(n, v)) + 0.001;
float NdotH = clamp(dot(n, h), 0.0, 1.0);
float LdotH = clamp(dot(l, h), 0.0, 1.0);
float VdotH = clamp(dot(v, h), 0.0, 1.0);
PBRInfo pbrInputs;
pbrInputs.NdotL = NdotL;
pbrInputs.NdotV = NdotV;
pbrInputs.NdotH = NdotH;
pbrInputs.LdotH = LdotH;
pbrInputs.VdotH = VdotH;
pbrInputs.perceptualRoughness = perceptualRoughness;
pbrInputs.metalness = metallic;
pbrInputs.reflectance0 = specularEnvironmentR0;
pbrInputs.reflectance90 = specularEnvironmentR90;
pbrInputs.alphaRoughness = alphaRoughness;
pbrInputs.diffuseColor = diffuseColor;
pbrInputs.specularColor = specularColor;
// Calculate the shading terms for the microfacet specular shading model
float3 F = specularReflection(pbrInputs);
float G = geometricOcclusion(pbrInputs);
float D = microfacetDistribution(pbrInputs);
// Calculation of analytical lighting contribution
float3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs);
float3 specContrib = F * G * D / (4.0 * NdotL * NdotV);
float3 color = NdotL * lightColour * (diffuseContrib + specContrib);
// Calculate lighting contribution from image based lighting source (IBL)
#ifdef USE_IBL
color += getIBLContribution(pbrInputs, n, reflection);
#endif
// Apply optional PBR terms for additional (optional) shading
#ifdef HAS_OCCLUSIONMAP
float ao = SAMPLE_TEXTURE(occlusionTexture, input.texcoord).r;
color = lerp(color, color * ao, occlusionStrength);
#endif
#ifdef HAS_EMISSIVEMAP
float3 emissive = SRGBtoLINEAR(SAMPLE_TEXTURE(emissionTexture, input.texcoord)).rgb * emissiveFactor;
color += emissive;
#endif
// This section uses lerp to override final color for reference app visualization
// of various parameters in the lighting equation.
color = lerp(color, F, scaleFGDSpec.x);
color = lerp(color, float3(G, G, G), scaleFGDSpec.y);
color = lerp(color, float3(D, D, D), scaleFGDSpec.z);
color = lerp(color, specContrib, scaleFGDSpec.w);
color = lerp(color, diffuseContrib, scaleDiffBaseMR.x);
color = lerp(color, baseColor.rgb, scaleDiffBaseMR.y);
color = lerp(color, float3(metallic, metallic, metallic), scaleDiffBaseMR.z);
color = lerp(color, float3(perceptualRoughness, perceptualRoughness, perceptualRoughness), scaleDiffBaseMR.w);
color = color / (color + float3(1.0, 1.0, 1.0));
float exposureConstant = 1.0 / 2.2;
color = pow(color, float3(exposureConstant, exposureConstant, exposureConstant));
return float4(color, 1.0);
}
Technique PBR
{
Pass pass1
{
VertexShader = compile vs_3_0 main_vs();
PixelShader = compile ps_3_0 main_ps();
}
Pass Pass1
{
VertexShader = compile vs_3_0 main_vs();
PixelShader = compile ps_3_0 None();
}
}

Binary file not shown.

View File

@ -0,0 +1,410 @@
#include "Macros.fxh"
#define NORMALS
#define UV
#define HAS_BASECOLORMAP
// A constant buffer that stores the three basic column-major matrices for composing geometry.
cbuffer ModelViewProjectionConstantBuffer : register(b0)
{
matrix model;
matrix view;
matrix projection;
};
// Per-vertex data used as input to the vertex shader.
struct VertexShaderInput
{
float4 position : POSITION;
#ifdef NORMALS
float3 normal : NORMAL;
#endif
#ifdef UV
float2 texcoord : TEXCOORD0;
#endif
};
// Per-pixel color data passed through the pixel shader.
struct PixelShaderInput
{
float4 position : SV_POSITION;
float4 positionWS : TEXCOORD1;
float3 normalWS : TEXCOORD2;
#ifdef NORMALS
float3 normal : NORMAL;
#endif
float2 texcoord : TEXCOORD0;
};
PixelShaderInput main_vs(VertexShaderInput input)
{
PixelShaderInput output;
// Transform the vertex position into projected space.
float4 pos = mul(input.position, model);
#ifdef NORMALS
// If we have normals...
output.normal = normalize(mul(float4(input.normal.xyz, 0.0), model));
#endif
#ifdef UV
output.texcoord = input.texcoord;
#else
output.texcoord = float2(0.0f, 0.0f);
#endif
#ifdef HAS_NORMALS
#ifdef HAS_TANGENTS
vec3 normalW = normalize(vec3(u_ModelMatrix * vec4(a_Normal.xyz, 0.0)));
vec3 tangentW = normalize(vec3(u_ModelMatrix * vec4(a_Tangent.xyz, 0.0)));
vec3 bitangentW = cross(normalW, tangentW) * a_Tangent.w;
v_TBN = mat3(tangentW, bitangentW, normalW);
#else // HAS_TANGENTS != 1
v_Normal = normalize(vec3(u_ModelMatrix * vec4(a_Normal.xyz, 0.0)));
#endif
#endif
// Transform the vertex position into projected space.
pos = mul(pos, view);
pos = mul(pos, projection);
output.position = pos;
return output;
}
//
// This fragment shader defines a reference implementation for Physically Based Shading of
// a microfacet surface material defined by a glTF model.
//
// References:
// [1] Real Shading in Unreal Engine 4
// http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
// [2] Physically Based Shading at Disney
// http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
// [3] README.md - Environment Maps
// https://github.com/KhronosGroup/glTF-WebGL-PBR/#environment-maps
// [4] "An Inexpensive BRDF Model for Physically based Rendering" by Christophe Schlick
// https://www.cs.virginia.edu/~jdl/bib/appearance/analytic%20models/schlick94b.pdf
#define NORMALS
#define UV
#define HAS_NORMALS
// #define USE_IBL
#define USE_TEX_LOD
DECLARE_TEXTURE(baseColourTexture, 0);
DECLARE_TEXTURE(normalTexture, 1);
DECLARE_TEXTURE(emissionTexture, 2);
DECLARE_TEXTURE(occlusionTexture, 3);
DECLARE_TEXTURE(metallicRoughnessTexture, 4);
DECLARE_CUBEMAP(envDiffuseTexture, 8);
DECLARE_TEXTURE(brdfLutTexture, 9);
DECLARE_CUBEMAP(envSpecularTexture, 10);
cbuffer cbPerFrame : register(b0)
{
float3 lightDir;
float3 lightColour;
};
cbuffer cbPerObject : register(b1)
{
float normalScale;
float3 emissiveFactor;
float occlusionStrength;
float2 metallicRoughnessValues;
float4 baseColorFactor;
float3 camera;
// debugging flags used for shader output of intermediate PBR variables
float4 scaleDiffBaseMR;
float4 scaleFGDSpec;
float4 scaleIBLAmbient;
};
#ifdef HAS_NORMALS
#ifdef HAS_TANGENTS
varying mat3 v_TBN;
#else
#endif
#endif
// Encapsulate the various inputs used by the various functions in the shading equation
// We store values in this struct to simplify the integration of alternative implementations
// of the shading terms, outlined in the Readme.MD Appendix.
struct PBRInfo
{
float NdotL; // cos angle between normal and light direction
float NdotV; // cos angle between normal and view direction
float NdotH; // cos angle between normal and half vector
float LdotH; // cos angle between light direction and half vector
float VdotH; // cos angle between view direction and half vector
float perceptualRoughness; // roughness value, as authored by the model creator (input to shader)
float metalness; // metallic value at the surface
float3 reflectance0; // full reflectance color (normal incidence angle)
float3 reflectance90; // reflectance color at grazing angle
float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2])
float3 diffuseColor; // color contribution from diffuse lighting
float3 specularColor; // color contribution from specular lighting
};
static const float M_PI = 3.141592653589793;
static const float c_MinRoughness = 0.04;
float4 SRGBtoLINEAR(float4 srgbIn)
{
#ifdef MANUAL_SRGB
#ifdef SRGB_FAST_APPROXIMATION
float3 linOut = pow(srgbIn.xyz,float3(2.2, 2.2, 2.2));
#else //SRGB_FAST_APPROXIMATION
float3 bLess = step(float3(0.04045, 0.04045, 0.04045), srgbIn.xyz);
float3 linOut = lerp(srgbIn.xyz / float3(12.92, 12.92, 12.92), pow((srgbIn.xyz + float3(0.055, 0.055, 0.055)) / float3(1.055, 1.055, 1.055), float3(2.4, 2.4, 2.4)), bLess);
#endif //SRGB_FAST_APPROXIMATION
return float4(linOut,srgbIn.w);;
#else //MANUAL_SRGB
return srgbIn;
#endif //MANUAL_SRGB
}
// Find the normal for this fragment, pulling either from a predefined normal map
// or from the interpolated mesh normal and tangent attributes.
float3 getNormal(float3 position, float3 normal, float2 uv)
{
// Retrieve the tangent space matrix
#ifndef HAS_TANGENTS
float3 pos_dx = ddx(position);
float3 pos_dy = ddy(position);
float3 tex_dx = ddx(float3(uv, 0.0));
float3 tex_dy = ddy(float3(uv, 0.0));
float3 t = (tex_dy.y * pos_dx - tex_dx.y * pos_dy) / (tex_dx.x * tex_dy.y - tex_dy.x * tex_dx.y);
#ifdef HAS_NORMALS
float3 ng = normalize(normal);
#else
float3 ng = cross(pos_dx, pos_dy);
#endif
t = normalize(t - ng * dot(ng, t));
float3 b = normalize(cross(ng, t));
row_major float3x3 tbn = float3x3(t, b, ng);
#else // HAS_TANGENTS
mat3 tbn = v_TBN;
#endif
#ifdef HAS_NORMALMAP
float3 n = SAMPLE_TEXTURE(normalTexture, uv).rgb;
// Need to check the multiplication is equivalent..
n = normalize(mul(((2.0 * n - 1.0) * float3(normalScale, normalScale, 1.0)), tbn));
#else
float3 n = tbn[2].xyz;
#endif
return n;
}
#ifdef USE_IBL
// Calculation of the lighting contribution from an optional Image Based Light source.
// Precomputed Environment Maps are required uniform inputs and are computed as outlined in [1].
// See our README.md on Environment Maps [3] for additional discussion.
float3 getIBLContribution(PBRInfo pbrInputs, float3 n, float3 reflection)
{
float mipCount = 9.0; // resolution of 512x512
float lod = (pbrInputs.perceptualRoughness * mipCount);
// retrieve a scale and bias to F0. See [1], Figure 3
float2 val = float2(pbrInputs.NdotV, 1.0 - pbrInputs.perceptualRoughness);
float3 brdf = SRGBtoLINEAR(SAMPLE_TEXTURE(brdfLutTexture, val)).rgb;
float3 diffuseLight = SRGBtoLINEAR(SAMPLE_CUBEMAP(envDiffuseTexture, n)).rgb;
#ifdef USE_TEX_LOD
float4 reflectionWithLOD = float4(reflection, 0);
float3 specularLight = SRGBtoLINEAR(SAMPLE_CUBEMAP_LOD(envSpecularTexture, reflectionWithLOD)).rgb;
#else
float3 specularLight = SRGBtoLINEAR(SAMPLE_CUBEMAP(envSpecularTexture, reflection)).rgb;
#endif
float3 diffuse = diffuseLight * pbrInputs.diffuseColor;
float3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y);
// For presentation, this allows us to disable IBL terms
diffuse *= scaleIBLAmbient.x;
specular *= scaleIBLAmbient.y;
return diffuse + specular;
}
#endif
// Basic Lambertian diffuse
// Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog
// See also [1], Equation 1
float3 diffuse(PBRInfo pbrInputs)
{
return pbrInputs.diffuseColor / M_PI;
}
// The following equation models the Fresnel reflectance term of the spec equation (aka F())
// Implementation of fresnel from [4], Equation 15
float3 specularReflection(PBRInfo pbrInputs)
{
return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0);
}
// This calculates the specular geometric attenuation (aka G()),
// where rougher material will reflect less light back to the viewer.
// This implementation is based on [1] Equation 4, and we adopt their modifications to
// alphaRoughness as input as originally proposed in [2].
float geometricOcclusion(PBRInfo pbrInputs)
{
float NdotL = pbrInputs.NdotL;
float NdotV = pbrInputs.NdotV;
float r = pbrInputs.alphaRoughness;
float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL)));
float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV)));
return attenuationL * attenuationV;
}
// The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D())
// Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz
// Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3.
float microfacetDistribution(PBRInfo pbrInputs)
{
float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness;
float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0;
return roughnessSq / (M_PI * f * f);
}
float4 main_ps(PixelShaderInput input) : SV_TARGET
{
// Metallic and Roughness material properties are packed together
// In glTF, these factors can be specified by fixed scalar values
// or from a metallic-roughness map
float perceptualRoughness = metallicRoughnessValues.y;
float metallic = metallicRoughnessValues.x;
#ifdef HAS_METALROUGHNESSMAP
// Roughness is stored in the 'g' channel, metallic is stored in the 'b' channel.
// This layout intentionally reserves the 'r' channel for (optional) occlusion map data
float4 mrSample = SAMPLE_TEXTURE(metallicRoughnessTexture, input.texcoord);
// Had to reverse the order of the channels here - TODO: investigate..
perceptualRoughness = mrSample.g * perceptualRoughness;
metallic = mrSample.b * metallic;
#endif
perceptualRoughness = clamp(perceptualRoughness, c_MinRoughness, 1.0);
metallic = clamp(metallic, 0.0, 1.0);
// Roughness is authored as perceptual roughness; as is convention,
// convert to material roughness by squaring the perceptual roughness [2].
float alphaRoughness = perceptualRoughness * perceptualRoughness;
// The albedo may be defined from a base texture or a flat color
#ifdef HAS_BASECOLORMAP
float4 baseColor = SRGBtoLINEAR(SAMPLE_TEXTURE(baseColourTexture, input.texcoord)) * baseColorFactor;
#else
float4 baseColor = baseColorFactor;
#endif
float3 f0 = float3(0.04, 0.04, 0.04);
float3 diffuseColor = baseColor.rgb * (float3(1.0, 1.0, 1.0) - f0);
diffuseColor *= 1.0 - metallic;
float3 specularColor = lerp(f0, baseColor.rgb, metallic);
// Compute reflectance.
float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b);
// For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect.
// For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%.
float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0);
float3 specularEnvironmentR0 = specularColor.rgb;
float3 specularEnvironmentR90 = float3(1.0, 1.0, 1.0) * reflectance90;
float3 n = getNormal(input.poswithoutw, input.normal, input.texcoord); // normal at surface point
float3 v = normalize(camera - input.poswithoutw); // Vector from surface point to camera
float3 l = normalize(lightDir); // Vector from surface point to light
float3 h = normalize(l + v); // Half vector between both l and v
float3 reflection = -normalize(reflect(v, n));
float NdotL = clamp(dot(n, l), 0.001, 1.0);
float NdotV = abs(dot(n, v)) + 0.001;
float NdotH = clamp(dot(n, h), 0.0, 1.0);
float LdotH = clamp(dot(l, h), 0.0, 1.0);
float VdotH = clamp(dot(v, h), 0.0, 1.0);
PBRInfo pbrInputs;
pbrInputs.NdotL = NdotL;
pbrInputs.NdotV = NdotV;
pbrInputs.NdotH = NdotH;
pbrInputs.LdotH = LdotH;
pbrInputs.VdotH = VdotH;
pbrInputs.perceptualRoughness = perceptualRoughness;
pbrInputs.metalness = metallic;
pbrInputs.reflectance0 = specularEnvironmentR0;
pbrInputs.reflectance90 = specularEnvironmentR90;
pbrInputs.alphaRoughness = alphaRoughness;
pbrInputs.diffuseColor = diffuseColor;
pbrInputs.specularColor = specularColor;
// Calculate the shading terms for the microfacet specular shading model
float3 F = specularReflection(pbrInputs);
float G = geometricOcclusion(pbrInputs);
float D = microfacetDistribution(pbrInputs);
// Calculation of analytical lighting contribution
float3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs);
float3 specContrib = F * G * D / (4.0 * NdotL * NdotV);
float3 color = NdotL * lightColour * (diffuseContrib + specContrib);
// Calculate lighting contribution from image based lighting source (IBL)
#ifdef USE_IBL
color += getIBLContribution(pbrInputs, n, reflection);
#endif
// Apply optional PBR terms for additional (optional) shading
#ifdef HAS_OCCLUSIONMAP
float ao = SAMPLE_TEXTURE(occlusionTexture, input.texcoord).r;
color = lerp(color, color * ao, occlusionStrength);
#endif
#ifdef HAS_EMISSIVEMAP
float3 emissive = SRGBtoLINEAR(SAMPLE_TEXTURE(emissionTexture, input.texcoord)).rgb * emissiveFactor;
color += emissive;
#endif
// This section uses lerp to override final color for reference app visualization
// of various parameters in the lighting equation.
color = lerp(color, F, scaleFGDSpec.x);
color = lerp(color, float3(G, G, G), scaleFGDSpec.y);
color = lerp(color, float3(D, D, D), scaleFGDSpec.z);
color = lerp(color, specContrib, scaleFGDSpec.w);
color = lerp(color, diffuseContrib, scaleDiffBaseMR.x);
color = lerp(color, baseColor.rgb, scaleDiffBaseMR.y);
color = lerp(color, float3(metallic, metallic, metallic), scaleDiffBaseMR.z);
color = lerp(color, float3(perceptualRoughness, perceptualRoughness, perceptualRoughness), scaleDiffBaseMR.w);
//return float4(baseColor.xyz, 1.0);
return float4(color, 1.0);
}
Technique PBR
{
Pass pass1
{
VertexShader = compile vs_3_0 main_vs();
PixelShader = compile ps_3_0 main_ps();
}
}

View File

@ -141,98 +141,113 @@ namespace Smuggler
if (primitive.Material != null)
{
var normalChannel = primitive.Material.FindChannel("Normal");
if (normalChannel.HasValue)
//var normalChannel = primitive.Material.FindChannel("Normal");
//if (normalChannel.HasValue)
//{
// if (normalChannel.Value.Texture != null)
// {
// effect.NormalTexture = Texture2D.FromStream(
// graphicsDevice,
// normalChannel.Value.Texture.PrimaryImage.Content.Open()
// );
// }
// effect.NormalScale = normalChannel.Value.Parameter.X;
//}
//var occlusionChannel = primitive.Material.FindChannel("Occlusion");
//if (occlusionChannel.HasValue)
//{
// if (occlusionChannel.Value.Texture != null)
// {
// effect.OcclusionTexture = Texture2D.FromStream(
// graphicsDevice,
// occlusionChannel.Value.Texture.PrimaryImage.Content.Open()
// );
// }
// effect.OcclusionStrength = occlusionChannel.Value.Parameter.X;
//}
//var emissiveChannel = primitive.Material.FindChannel("Emissive");
//if (emissiveChannel.HasValue)
//{
// if (emissiveChannel.Value.Texture != null)
// {
// effect.EmissionTexture = Texture2D.FromStream(
// graphicsDevice,
// emissiveChannel.Value.Texture.PrimaryImage.Content.Open()
// );
// }
// var parameter = emissiveChannel.Value.Parameter;
// effect.EmissiveFactor = new Vector3(
// parameter.X,
// parameter.Y,
// parameter.Z
// );
//}
var albedoChannel = primitive.Material.FindChannel("BaseColor");
if (albedoChannel.HasValue)
{
if (normalChannel.Value.Texture != null)
{
effect.NormalTexture = Texture2D.FromStream(
graphicsDevice,
normalChannel.Value.Texture.PrimaryImage.Content.Open()
);
}
//if (albedoChannel.Value.Texture != null)
//{
// effect.BaseColourTexture = Texture2D.FromStream(
// graphicsDevice,
// albedoChannel.Value.Texture.PrimaryImage.Content.Open()
// );
//}
effect.NormalScale = normalChannel.Value.Parameter.X;
}
var parameter = albedoChannel.Value.Parameter;
var occlusionChannel = primitive.Material.FindChannel("Occlusion");
if (occlusionChannel.HasValue)
{
if (occlusionChannel.Value.Texture != null)
{
effect.OcclusionTexture = Texture2D.FromStream(
graphicsDevice,
occlusionChannel.Value.Texture.PrimaryImage.Content.Open()
);
}
effect.OcclusionStrength = occlusionChannel.Value.Parameter.X;
}
var emissiveChannel = primitive.Material.FindChannel("Emissive");
if (emissiveChannel.HasValue)
{
if (emissiveChannel.Value.Texture != null)
{
effect.EmissionTexture = Texture2D.FromStream(
graphicsDevice,
emissiveChannel.Value.Texture.PrimaryImage.Content.Open()
);
}
var parameter = emissiveChannel.Value.Parameter;
effect.EmissiveFactor = new Vector3(
effect.Albedo = new Vector3(
parameter.X,
parameter.Y,
parameter.Z
);
}
var baseColorChannel = primitive.Material.FindChannel("BaseColor");
if (baseColorChannel.HasValue)
{
if (baseColorChannel.Value.Texture != null)
{
effect.BaseColourTexture = Texture2D.FromStream(
graphicsDevice,
baseColorChannel.Value.Texture.PrimaryImage.Content.Open()
);
}
var parameter = baseColorChannel.Value.Parameter;
effect.BaseColorFactor = new Vector4(
parameter.X,
parameter.Y,
parameter.Z,
parameter.W
);
}
var metallicRoughnessChannel = primitive.Material.FindChannel("MetallicRoughness");
if (metallicRoughnessChannel.HasValue)
{
if (metallicRoughnessChannel.Value.Texture != null)
{
effect.MetallicRoughnessTexture = Texture2D.FromStream(
graphicsDevice,
metallicRoughnessChannel.Value.Texture.PrimaryImage.Content.Open()
);
}
//if (metallicRoughnessChannel.Value.Texture != null)
//{
// effect.MetallicRoughnessTexture = Texture2D.FromStream(
// graphicsDevice,
// metallicRoughnessChannel.Value.Texture.PrimaryImage.Content.Open()
// );
//}
var parameter = metallicRoughnessChannel.Value.Parameter;
effect.MetallicRoughnessValue = new Vector2(
parameter.X,
parameter.Y
);
effect.Metallic = parameter.X;
effect.Roughness = parameter.Y;
}
}
effect.Light = new PBRLight(
new Vector3(0.5f, 0.5f, -0.5f),
new Vector3(10f, 10f, 10f)
effect.Albedo = new Vector3(0.5f, 0, 0);
effect.AO = 1f;
effect.Lights[0] = new PBRLight(
new Vector3(-10f, 10f, 10f),
new Vector3(300f, 300f, 300f)
);
effect.Lights[1] = new PBRLight(
new Vector3(10f, 10f, 10f),
new Vector3(300f, 300f, 300f)
);
effect.Lights[2] = new PBRLight(
new Vector3(-10f, -10f, 10f),
new Vector3(300f, 300f, 300f)
);
effect.Lights[3] = new PBRLight(
new Vector3(10f, -10f, 10f),
new Vector3(300f, 300f, 300f)
);
/* FIXME: how to load cube maps from GLTF? */

View File

@ -8,6 +8,7 @@
<Copyright>Cassandra Lugo and Evan Hemsley 2020</Copyright>
<GeneratePackageOnBuild>true</GeneratePackageOnBuild>
<AssemblyName>Smuggler</AssemblyName>
<Platforms>AnyCPU;x86</Platforms>
</PropertyGroup>
<ItemGroup>
@ -15,7 +16,7 @@
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\FNA\FNA.Core.csproj"/>
<ProjectReference Include="..\FNA\FNA.Core.csproj" />
</ItemGroup>
<ItemGroup>