MoonTools.Bonk/Bonk/NarrowPhase/NarrowPhase.cs

376 lines
15 KiB
C#

using MoonTools.Core.Structs;
using System;
using System.Collections.Generic;
using System.Numerics;
namespace MoonTools.Core.Bonk
{
public static class NarrowPhase
{
private enum PolygonWinding
{
Clockwise,
CounterClockwise
}
public static bool TestCollision<T, U>(ICollisionTestable<T> a, ICollisionTestable<U> b) where T : struct, IShape2D where U : struct, IShape2D
{
foreach (var shape in a.TransformedShapes)
{
foreach (var shapeB in b.TransformedShapes)
{
return TestCollision(shape, shapeB);
}
}
return false;
}
/// <summary>
/// Tests if two shape-transform pairs are overlapping.
/// </summary>
public static bool TestCollision<T, U>(T shape, Transform2D transform, U shapeB, Transform2D transformB) where T : struct, IShape2D where U : struct, IShape2D
{
return TestCollision(new TransformedShape2D<T>(shape, transform), new TransformedShape2D<U>(shapeB, transformB));
}
/// <summary>
/// Tests if two TransformedShapes are overlapping.
/// </summary>
/// <typeparam name="T"></typeparam>
/// <typeparam name="U"></typeparam>
/// <param name="transformedShapeA"></param>
/// <param name="transformedShapeB"></param>
/// <returns></returns>
public static bool TestCollision<T, U>(TransformedShape2D<T> transformedShapeA, TransformedShape2D<U> transformedShapeB) where T : struct, IShape2D where U : struct, IShape2D
{
return FindCollisionSimplex(transformedShapeA, transformedShapeB).Item1;
}
/// <summary>
/// Tests if a multishape-transform and shape-transform pair are overlapping.
/// Note that this must perform pairwise comparison so the worst-case performance of this method will vary inversely with the amount of shapes in the multishape.
/// </summary>
/// <param name="multiShape"></param>
/// <param name="multiShapeTransform"></param>
/// <param name="shape"></param>
/// <returns></returns>
public static bool TestCollision<T, U>(MultiShape<T> multiShape, Transform2D multiShapeTransform, TransformedShape2D<U> shape) where T : struct, IShape2D where U : struct, IShape2D
{
foreach (var transformedShape in multiShape.Compose(multiShapeTransform))
{
if (TestCollision(shape, transformedShape)) { return true; }
}
return false;
}
public static bool TestCollison<T>(IEnumerable<TransformedShape2D<T>> transformedShapes, Transform2D multiShapeTransform, TransformedShape2D<U> shape) where T : struct, IShape2D where U : struct, IShape2D
{
foreach (var transformedShape in transformedShapes)
{
if (TestCollision(transformedShape.Compose(multiShapeTransform), shape)) { return true; }
}
return false;
}
/// <summary>
/// Tests if a multishape-transform and shape-transform pair are overlapping.
/// Note that this must perform pairwise comparison so the worst-case performance of this method will vary inversely with the amount of shapes in the multishape.
/// </summary>
/// <param name="multiShape"></param>
/// <param name="multiShapeTransform"></param>
/// <param name="shape"></param>
/// <returns></returns>
public static bool TestCollision<T, U>(TransformedShape2D<T> shape, MultiShape<U> multiShape, Transform2D multiShapeTransform) where T : struct, IShape2D where U : struct, IShape2D
{
return TestCollision(multiShape, multiShapeTransform, shape);
}
/// <summary>
/// Tests if two multishape-transform pairs are overlapping.
/// Note that this must perform pairwise comparison so the worst-case performance of this method will vary inversely with the amount of shapes in the multishapes.
/// </summary>
/// <param name="multiShapeA"></param>
/// <param name="transformA"></param>
/// <param name="multiShapeB"></param>
/// <param name="transformB"></param>
/// <returns></returns>
public static bool TestCollision<T, U>(MultiShape<T> multiShapeA, Transform2D transformA, MultiShape<U> multiShapeB, Transform2D transformB) where T : struct, IShape2D where U : struct, IShape2D
{
foreach (var transformedShapeA in multiShapeA.Compose(transformA))
{
foreach (var transformedShapeB in multiShapeB.Compose(transformB))
{
if (TestCollision(transformedShapeA, transformedShapeB)) { return true; }
}
}
return false;
}
/// <summary>
/// Fast path for axis-aligned rectangles. If the transforms have non-zero rotation this will be inaccurate.
/// </summary>
/// <param name="rectangleA"></param>
/// <param name="rectangleB"></param>
/// <returns></returns>
public static bool TestCollision(TransformedShape2D<Rectangle> rectangleA, TransformedShape2D<Rectangle> rectangleB)
{
var firstAABB = rectangleA.AABB;
var secondAABB = rectangleB.AABB;
return firstAABB.Left <= secondAABB.Right && firstAABB.Right >= secondAABB.Left && firstAABB.Top <= secondAABB.Bottom && firstAABB.Bottom >= secondAABB.Top;
}
/// <summary>
/// Fast path for overlapping point and axis-aligned rectangle. The rectangle transform must have non-zero rotation.
/// </summary>
/// <param name="point"></param>
/// <param name="rectangle"></param>
/// <returns></returns>
public static bool TestCollision(TransformedShape2D<Point> point, TransformedShape2D<Rectangle> rectangle)
{
var transformedPoint = point.Transform.Position;
var AABB = rectangle.AABB;
return transformedPoint.X >= AABB.Left && transformedPoint.X <= AABB.Right && transformedPoint.Y <= AABB.Bottom && transformedPoint.Y >= AABB.Top;
}
public static bool TestCollision(TransformedShape2D<Rectangle> rectangle, TransformedShape2D<Point> point)
{
return TestCollision(point, rectangle);
}
/// <summary>
/// Fast path for overlapping circles. The circles must have uniform scaling.
/// </summary>
/// <param name="circleA"></param>
/// <param name="circleB"></param>
/// <returns></returns>
public static bool TestCollision(TransformedShape2D<Circle> circleA, TransformedShape2D<Circle> circleB)
{
var radiusA = circleA.Shape.Radius * circleA.Transform.Scale.X;
var radiusB = circleB.Shape.Radius * circleB.Transform.Scale.Y;
var centerA = circleA.Transform.Position;
var centerB = circleB.Transform.Position;
var distanceSquared = (centerA - centerB).LengthSquared();
var radiusSumSquared = (radiusA + radiusB) * (radiusA + radiusB);
return distanceSquared <= radiusSumSquared;
}
/// <summary>
/// Tests if the two shape-transform pairs are overlapping, and returns a simplex that can be used by the EPA algorithm to determine a miminum separating vector.
/// </summary>
public static (bool, Simplex2D) FindCollisionSimplex<T, U>(TransformedShape2D<T> shapeA, TransformedShape2D<U> shapeB) where T : struct, IShape2D where U : struct, IShape2D
{
var minkowskiDifference = new MinkowskiDifference<T, U>(shapeA, shapeB);
var c = minkowskiDifference.Support(Vector2.UnitX);
var b = minkowskiDifference.Support(-Vector2.UnitX);
return Check(minkowskiDifference, c, b);
}
/// <summary>
/// Returns a minimum separating vector in the direction from A to B.
/// </summary>
/// <param name="simplex">A simplex returned by the GJK algorithm.</param>
public unsafe static Vector2 Intersect<T, U>(TransformedShape2D<T> shapeA, TransformedShape2D<U> shapeB, Simplex2D simplex) where T : struct, IShape2D where U : struct, IShape2D
{
if (shapeA == null) { throw new System.ArgumentNullException(nameof(shapeA)); }
if (shapeB == null) { throw new System.ArgumentNullException(nameof(shapeB)); }
if (!simplex.TwoSimplex) { throw new System.ArgumentException("Simplex must be a 2-Simplex.", nameof(simplex)); }
var a = simplex.A;
var b = simplex.B.Value;
var c = simplex.C.Value;
var e0 = (b.X - a.X) * (b.Y + a.Y);
var e1 = (c.X - b.X) * (c.Y + b.Y);
var e2 = (a.X - c.X) * (a.Y + c.Y);
var winding = e0 + e1 + e2 >= 0 ? PolygonWinding.Clockwise : PolygonWinding.CounterClockwise;
var simplexVertices = new SimplexVertexBuffer(simplex.Vertices);
Vector2 intersection = default;
for (var i = 0; i < 32; i++)
{
var edge = FindClosestEdge(winding, simplexVertices);
var support = CalculateSupport(shapeA, shapeB, edge.normal);
var distance = Vector2.Dot(support, edge.normal);
intersection = edge.normal;
intersection *= distance;
if (System.Math.Abs(distance - edge.distance) <= float.Epsilon)
{
return intersection;
}
else
{
simplexVertices.Insert(edge.index, support);
}
}
return intersection;
}
private static Edge FindClosestEdge(PolygonWinding winding, SimplexVertexBuffer simplexVertices)
{
var closestDistance = float.PositiveInfinity;
var closestNormal = Vector2.Zero;
var closestIndex = 0;
for (var i = 0; i < simplexVertices.Length; i++)
{
var j = i + 1;
if (j >= simplexVertices.Length) { j = 0; }
var edge = simplexVertices[j] - simplexVertices[i];
Vector2 norm;
if (winding == PolygonWinding.Clockwise)
{
norm = Vector2.Normalize(new Vector2(edge.Y, -edge.X));
}
else
{
norm = Vector2.Normalize(new Vector2(-edge.Y, edge.X));
}
var dist = Vector2.Dot(norm, simplexVertices[i]);
if (dist < closestDistance)
{
closestDistance = dist;
closestNormal = norm;
closestIndex = j;
}
}
return new Edge(closestDistance, closestNormal, closestIndex);
}
private static Vector2 CalculateSupport<T, U>(TransformedShape2D<T> shapeA, TransformedShape2D<U> shapeB, Vector2 direction) where T : struct, IShape2D where U : struct, IShape2D
{
return shapeA.Support(direction) - shapeB.Support(-direction);
}
private static (bool, Simplex2D) Check<T, U>(MinkowskiDifference<T, U> minkowskiDifference, Vector2 c, Vector2 b) where T : struct, IShape2D where U : struct, IShape2D
{
var cb = c - b;
var c0 = -c;
var d = Direction(cb, c0);
return DoSimplex(minkowskiDifference, new Simplex2D(b, c), d);
}
private static (bool, Simplex2D) DoSimplex<T, U>(MinkowskiDifference<T, U> minkowskiDifference, Simplex2D simplex, Vector2 direction) where T : struct, IShape2D where U : struct, IShape2D
{
var a = minkowskiDifference.Support(direction);
var notPastOrigin = Vector2.Dot(a, direction) < 0;
var (intersects, newSimplex, newDirection) = EnclosesOrigin(a, simplex);
if (notPastOrigin)
{
return (false, default(Simplex2D));
}
else if (intersects)
{
return (true, new Simplex2D(simplex.A, simplex.B.Value, a));
}
else
{
return DoSimplex(minkowskiDifference, newSimplex, newDirection);
}
}
private static (bool, Simplex2D, Vector2) EnclosesOrigin(Vector2 a, Simplex2D simplex)
{
if (simplex.ZeroSimplex)
{
return HandleZeroSimplex(a, simplex.A);
}
else if (simplex.OneSimplex)
{
return HandleOneSimplex(a, simplex.A, simplex.B.Value);
}
else
{
return (false, simplex, Vector2.Zero);
}
}
private static (bool, Simplex2D, Vector2) HandleZeroSimplex(Vector2 a, Vector2 b)
{
var ab = b - a;
var a0 = -a;
var (newSimplex, newDirection) = SameDirection(ab, a0) ? (new Simplex2D(a, b), Perpendicular(ab, a0)) : (new Simplex2D(a), a0);
return (false, newSimplex, newDirection);
}
private static (bool, Simplex2D, Vector2) HandleOneSimplex(Vector2 a, Vector2 b, Vector2 c)
{
var a0 = -a;
var ab = b - a;
var ac = c - a;
var abp = Perpendicular(ab, -ac);
var acp = Perpendicular(ac, -ab);
if (SameDirection(abp, a0))
{
if (SameDirection(ab, a0))
{
return (false, new Simplex2D(a, b), abp);
}
else
{
return (false, new Simplex2D(a), a0);
}
}
else if (SameDirection(acp, a0))
{
if (SameDirection(ac, a0))
{
return (false, new Simplex2D(a, c), acp);
}
else
{
return (false, new Simplex2D(a), a0);
}
}
else
{
return (true, new Simplex2D(b, c), a0);
}
}
private static Vector2 TripleProduct(Vector2 a, Vector2 b, Vector2 c)
{
var A = new Vector3(a.X, a.Y, 0);
var B = new Vector3(b.X, b.Y, 0);
var C = new Vector3(c.X, c.Y, 0);
var first = Vector3.Cross(A, B);
var second = Vector3.Cross(first, C);
return new Vector2(second.X, second.Y);
}
private static Vector2 Direction(Vector2 a, Vector2 b)
{
var d = TripleProduct(a, b, a);
var collinear = d == Vector2.Zero;
return collinear ? new Vector2(a.Y, -a.X) : d;
}
private static bool SameDirection(Vector2 a, Vector2 b)
{
return Vector2.Dot(a, b) > 0;
}
private static Vector2 Perpendicular(Vector2 a, Vector2 b)
{
return TripleProduct(a, b, a);
}
}
}