127 lines
4.5 KiB
C#
127 lines
4.5 KiB
C#
|
/*
|
|||
|
* Implementation of the GJK collision algorithm
|
|||
|
* Based on some math blogs
|
|||
|
* https://blog.hamaluik.ca/posts/building-a-collision-engine-part-1-2d-gjk-collision-detection/
|
|||
|
* and some code from https://github.com/kroitor/gjk.c
|
|||
|
*/
|
|||
|
|
|||
|
using Microsoft.Xna.Framework;
|
|||
|
using MoonTools.Core.Structs;
|
|||
|
using System;
|
|||
|
|
|||
|
namespace MoonTools.Core.Bonk
|
|||
|
{
|
|||
|
public static class GJK2D
|
|||
|
{
|
|||
|
private enum SolutionStatus
|
|||
|
{
|
|||
|
NoIntersection,
|
|||
|
Intersection,
|
|||
|
StillSolving
|
|||
|
}
|
|||
|
|
|||
|
public static ValueTuple<bool, SimplexVertices> TestCollision(IShape2D shapeA, Transform2D Transform2DA, IShape2D shapeB, Transform2D Transform2DB)
|
|||
|
{
|
|||
|
var vertices = new SimplexVertices(new Vector2?[] { null, null, null, null });
|
|||
|
|
|||
|
const SolutionStatus solutionStatus = SolutionStatus.StillSolving;
|
|||
|
var direction = Transform2DB.Position - Transform2DA.Position;
|
|||
|
|
|||
|
var result = (solutionStatus, direction);
|
|||
|
|
|||
|
while (result.solutionStatus == SolutionStatus.StillSolving)
|
|||
|
{
|
|||
|
result = EvolveSimplex(shapeA, Transform2DA, shapeB, Transform2DB, vertices, result.direction);
|
|||
|
}
|
|||
|
|
|||
|
return ValueTuple.Create(result.solutionStatus == SolutionStatus.Intersection, vertices);
|
|||
|
}
|
|||
|
|
|||
|
private static (SolutionStatus, Vector2) EvolveSimplex(IShape2D shapeA, Transform2D Transform2DA, IShape2D shapeB, Transform2D Transform2DB, SimplexVertices vertices, Vector2 direction)
|
|||
|
{
|
|||
|
switch(vertices.Count)
|
|||
|
{
|
|||
|
case 0:
|
|||
|
if (direction == Vector2.Zero)
|
|||
|
{
|
|||
|
direction = Vector2.UnitX;
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case 1:
|
|||
|
direction *= -1;
|
|||
|
break;
|
|||
|
|
|||
|
case 2:
|
|||
|
var ab = vertices[1] - vertices[0];
|
|||
|
var a0 = vertices[0] * -1;
|
|||
|
|
|||
|
direction = TripleProduct(ab, a0, ab);
|
|||
|
if (direction == Vector2.Zero)
|
|||
|
{
|
|||
|
direction = Perpendicular(ab);
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case 3:
|
|||
|
var c0 = vertices[2] * -1;
|
|||
|
var bc = vertices[1] - vertices[2];
|
|||
|
var ca = vertices[0] - vertices[2];
|
|||
|
|
|||
|
var bcNorm = TripleProduct(ca, bc, bc);
|
|||
|
var caNorm = TripleProduct(bc, ca, ca);
|
|||
|
|
|||
|
// the origin is outside line bc
|
|||
|
// get rid of a and add a new support in the direction of bcNorm
|
|||
|
if (Vector2.Dot(bcNorm, c0) > 0)
|
|||
|
{
|
|||
|
vertices.RemoveAt(0);
|
|||
|
direction = bcNorm;
|
|||
|
}
|
|||
|
// the origin is outside line ca
|
|||
|
// get rid of b and add a new support in the direction of caNorm
|
|||
|
else if (Vector2.Dot(caNorm, c0) > 0)
|
|||
|
{
|
|||
|
vertices.RemoveAt(1);
|
|||
|
direction = caNorm;
|
|||
|
}
|
|||
|
// the origin is inside both ab and ac,
|
|||
|
// so it must be inside the triangle!
|
|||
|
else
|
|||
|
{
|
|||
|
return (SolutionStatus.Intersection, direction);
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
return (AddSupport(shapeA, Transform2DA, shapeB, Transform2DB, vertices, direction) ?
|
|||
|
SolutionStatus.StillSolving :
|
|||
|
SolutionStatus.NoIntersection, direction);
|
|||
|
}
|
|||
|
|
|||
|
private static bool AddSupport(IShape2D shapeA, Transform2D Transform2DA, IShape2D shapeB, Transform2D Transform2DB, SimplexVertices vertices, Vector2 direction)
|
|||
|
{
|
|||
|
var newVertex = shapeA.Support(direction, Transform2DA) - shapeB.Support(-direction, Transform2DB);
|
|||
|
vertices.Add(newVertex);
|
|||
|
return Vector2.Dot(direction, newVertex) >= 0;
|
|||
|
}
|
|||
|
|
|||
|
private static Vector2 TripleProduct(Vector2 a, Vector2 b, Vector2 c)
|
|||
|
{
|
|||
|
var A = new Vector3(a.X, a.Y, 0);
|
|||
|
var B = new Vector3(b.X, b.Y, 0);
|
|||
|
var C = new Vector3(c.X, c.Y, 0);
|
|||
|
|
|||
|
var first = Vector3.Cross(A, B);
|
|||
|
var second = Vector3.Cross(first, C);
|
|||
|
|
|||
|
return new Vector2(second.X, second.Y);
|
|||
|
}
|
|||
|
|
|||
|
private static Vector2 Perpendicular(Vector2 v)
|
|||
|
{
|
|||
|
return new Vector2(v.Y, -v.X);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|