2020-01-01 01:45:42 +00:00
using MoonTools.Core.Structs ;
using System.Numerics ;
namespace MoonTools.Core.Bonk
{
public static class NarrowPhase
{
private enum PolygonWinding
{
Clockwise ,
CounterClockwise
}
/// <summary>
2020-01-02 03:24:42 +00:00
/// Tests if two shape-transform pairs are overlapping. Automatically detects fast-path optimizations.
2020-01-01 01:45:42 +00:00
/// </summary>
public static bool TestCollision ( IShape2D shapeA , Transform2D transformA , IShape2D shapeB , Transform2D transformB )
{
if ( shapeA is Rectangle rectangleA & & shapeB is Rectangle rectangleB & & transformA . Rotation = = 0 & & transformB . Rotation = = 0 )
{
return TestRectangleOverlap ( rectangleA , transformA , rectangleB , transformB ) ;
}
2020-01-01 02:23:06 +00:00
else if ( shapeA is Point & & shapeB is Rectangle & & transformB . Rotation = = 0 )
{
return TestPointRectangleOverlap ( ( Point ) shapeA , transformA , ( Rectangle ) shapeB , transformB ) ;
}
else if ( shapeA is Rectangle & & shapeB is Point & & transformA . Rotation = = 0 )
{
return TestPointRectangleOverlap ( ( Point ) shapeB , transformB , ( Rectangle ) shapeA , transformA ) ;
}
else if ( shapeA is Circle circleA & & shapeB is Circle circleB & & transformA . Scale . X = = transformA . Scale . Y & & transformB . Scale . X = = transformB . Scale . Y )
{
return TestCircleOverlap ( circleA , transformA , circleB , transformB ) ;
}
2020-01-01 01:45:42 +00:00
return FindCollisionSimplex ( shapeA , transformA , shapeB , transformB ) . Item1 ;
}
/// <summary>
2020-01-01 02:23:06 +00:00
/// Fast path for axis-aligned rectangles. If the transforms have non-zero rotation this will be inaccurate.
2020-01-01 01:45:42 +00:00
/// </summary>
/// <param name="rectangleA"></param>
/// <param name="transformA"></param>
/// <param name="rectangleB"></param>
/// <param name="transformB"></param>
/// <returns></returns>
public static bool TestRectangleOverlap ( Rectangle rectangleA , Transform2D transformA , Rectangle rectangleB , Transform2D transformB )
{
var firstAABB = rectangleA . TransformedAABB ( transformA ) ;
var secondAABB = rectangleB . TransformedAABB ( transformB ) ;
return firstAABB . Left < = secondAABB . Right & & firstAABB . Right > = secondAABB . Left & & firstAABB . Top < = secondAABB . Bottom & & firstAABB . Bottom > = secondAABB . Top ;
}
2020-01-01 02:23:06 +00:00
/// <summary>
/// Fast path for overlapping point and axis-aligned rectangle. The rectangle transform must have non-zero rotation.
/// </summary>
/// <param name="point"></param>
/// <param name="pointTransform"></param>
/// <param name="rectangle"></param>
/// <param name="rectangleTransform"></param>
/// <returns></returns>
public static bool TestPointRectangleOverlap ( Point point , Transform2D pointTransform , Rectangle rectangle , Transform2D rectangleTransform )
{
var transformedPoint = pointTransform . Position ;
var AABB = rectangle . TransformedAABB ( rectangleTransform ) ;
return transformedPoint . X > = AABB . Left & & transformedPoint . X < = AABB . Right & & transformedPoint . Y < = AABB . Bottom & & transformedPoint . Y > = AABB . Top ;
}
/// <summary>
/// Fast path for overlapping circles. The circles must have uniform scaling.
/// </summary>
/// <param name="circleA"></param>
/// <param name="transformA"></param>
/// <param name="circleB"></param>
/// <param name="transformB"></param>
/// <returns></returns>
public static bool TestCircleOverlap ( Circle circleA , Transform2D transformA , Circle circleB , Transform2D transformB )
{
var radiusA = circleA . Radius * transformA . Scale . X ;
var radiusB = circleB . Radius * transformB . Scale . Y ;
var centerA = transformA . Position ;
var centerB = transformB . Position ;
var distanceSquared = ( centerA - centerB ) . LengthSquared ( ) ;
var radiusSumSquared = ( radiusA + radiusB ) * ( radiusA + radiusB ) ;
return distanceSquared < = radiusSumSquared ;
}
2020-01-01 01:45:42 +00:00
/// <summary>
/// Tests if the two shape-transform pairs are overlapping, and returns a simplex that can be used by the EPA algorithm to determine a miminum separating vector.
/// </summary>
public static ( bool , Simplex2D ) FindCollisionSimplex ( IShape2D shapeA , Transform2D transformA , IShape2D shapeB , Transform2D transformB )
{
var minkowskiDifference = new MinkowskiDifference ( shapeA , transformA , shapeB , transformB ) ;
var c = minkowskiDifference . Support ( Vector2 . UnitX ) ;
var b = minkowskiDifference . Support ( - Vector2 . UnitX ) ;
return Check ( minkowskiDifference , c , b ) ;
}
/// <summary>
/// Returns a minimum separating vector in the direction from A to B.
/// </summary>
/// <param name="simplex">A simplex returned by the GJK algorithm.</param>
public unsafe static Vector2 Intersect ( IShape2D shapeA , Transform2D Transform2DA , IShape2D shapeB , Transform2D Transform2DB , Simplex2D simplex )
{
if ( shapeA = = null ) { throw new System . ArgumentNullException ( nameof ( shapeA ) ) ; }
if ( shapeB = = null ) { throw new System . ArgumentNullException ( nameof ( shapeB ) ) ; }
if ( ! simplex . TwoSimplex ) { throw new System . ArgumentException ( "Simplex must be a 2-Simplex." , nameof ( simplex ) ) ; }
var a = simplex . A ;
var b = simplex . B . Value ;
var c = simplex . C . Value ;
var e0 = ( b . X - a . X ) * ( b . Y + a . Y ) ;
var e1 = ( c . X - b . X ) * ( c . Y + b . Y ) ;
var e2 = ( a . X - c . X ) * ( a . Y + c . Y ) ;
var winding = e0 + e1 + e2 > = 0 ? PolygonWinding . Clockwise : PolygonWinding . CounterClockwise ;
var simplexVertices = new SimplexVertexBuffer ( simplex . Vertices ) ;
Vector2 intersection = default ;
for ( var i = 0 ; i < 32 ; i + + )
{
var edge = FindClosestEdge ( winding , simplexVertices ) ;
var support = CalculateSupport ( shapeA , Transform2DA , shapeB , Transform2DB , edge . normal ) ;
var distance = Vector2 . Dot ( support , edge . normal ) ;
intersection = edge . normal ;
intersection * = distance ;
if ( System . Math . Abs ( distance - edge . distance ) < = float . Epsilon )
{
return intersection ;
}
else
{
simplexVertices . Insert ( edge . index , support ) ;
}
}
return intersection ;
}
private static Edge FindClosestEdge ( PolygonWinding winding , SimplexVertexBuffer simplexVertices )
{
var closestDistance = float . PositiveInfinity ;
var closestNormal = Vector2 . Zero ;
var closestIndex = 0 ;
for ( var i = 0 ; i < simplexVertices . Length ; i + + )
{
var j = i + 1 ;
if ( j > = simplexVertices . Length ) { j = 0 ; }
var edge = simplexVertices [ j ] - simplexVertices [ i ] ;
Vector2 norm ;
if ( winding = = PolygonWinding . Clockwise )
{
norm = Vector2 . Normalize ( new Vector2 ( edge . Y , - edge . X ) ) ;
}
else
{
norm = Vector2 . Normalize ( new Vector2 ( - edge . Y , edge . X ) ) ;
}
var dist = Vector2 . Dot ( norm , simplexVertices [ i ] ) ;
if ( dist < closestDistance )
{
closestDistance = dist ;
closestNormal = norm ;
closestIndex = j ;
}
}
return new Edge ( closestDistance , closestNormal , closestIndex ) ;
}
private static Vector2 CalculateSupport ( IShape2D shapeA , Transform2D Transform2DA , IShape2D shapeB , Transform2D Transform2DB , Vector2 direction )
{
return shapeA . Support ( direction , Transform2DA ) - shapeB . Support ( - direction , Transform2DB ) ;
}
private static ( bool , Simplex2D ) Check ( MinkowskiDifference minkowskiDifference , Vector2 c , Vector2 b )
{
var cb = c - b ;
var c0 = - c ;
var d = Direction ( cb , c0 ) ;
return DoSimplex ( minkowskiDifference , new Simplex2D ( b , c ) , d ) ;
}
private static ( bool , Simplex2D ) DoSimplex ( MinkowskiDifference minkowskiDifference , Simplex2D simplex , Vector2 direction )
{
var a = minkowskiDifference . Support ( direction ) ;
var notPastOrigin = Vector2 . Dot ( a , direction ) < 0 ;
var ( intersects , newSimplex , newDirection ) = EnclosesOrigin ( a , simplex ) ;
if ( notPastOrigin )
{
return ( false , default ( Simplex2D ) ) ;
}
else if ( intersects )
{
return ( true , new Simplex2D ( simplex . A , simplex . B . Value , a ) ) ;
}
else
{
return DoSimplex ( minkowskiDifference , newSimplex , newDirection ) ;
}
}
private static ( bool , Simplex2D , Vector2 ) EnclosesOrigin ( Vector2 a , Simplex2D simplex )
{
if ( simplex . ZeroSimplex )
{
return HandleZeroSimplex ( a , simplex . A ) ;
}
else if ( simplex . OneSimplex )
{
return HandleOneSimplex ( a , simplex . A , simplex . B . Value ) ;
}
else
{
return ( false , simplex , Vector2 . Zero ) ;
}
}
private static ( bool , Simplex2D , Vector2 ) HandleZeroSimplex ( Vector2 a , Vector2 b )
{
var ab = b - a ;
var a0 = - a ;
var ( newSimplex , newDirection ) = SameDirection ( ab , a0 ) ? ( new Simplex2D ( a , b ) , Perpendicular ( ab , a0 ) ) : ( new Simplex2D ( a ) , a0 ) ;
return ( false , newSimplex , newDirection ) ;
}
private static ( bool , Simplex2D , Vector2 ) HandleOneSimplex ( Vector2 a , Vector2 b , Vector2 c )
{
var a0 = - a ;
var ab = b - a ;
var ac = c - a ;
var abp = Perpendicular ( ab , - ac ) ;
var acp = Perpendicular ( ac , - ab ) ;
if ( SameDirection ( abp , a0 ) )
{
if ( SameDirection ( ab , a0 ) )
{
return ( false , new Simplex2D ( a , b ) , abp ) ;
}
else
{
return ( false , new Simplex2D ( a ) , a0 ) ;
}
}
else if ( SameDirection ( acp , a0 ) )
{
if ( SameDirection ( ac , a0 ) )
{
return ( false , new Simplex2D ( a , c ) , acp ) ;
}
else
{
return ( false , new Simplex2D ( a ) , a0 ) ;
}
}
else
{
return ( true , new Simplex2D ( b , c ) , a0 ) ;
}
}
private static Vector2 TripleProduct ( Vector2 a , Vector2 b , Vector2 c )
{
var A = new Vector3 ( a . X , a . Y , 0 ) ;
var B = new Vector3 ( b . X , b . Y , 0 ) ;
var C = new Vector3 ( c . X , c . Y , 0 ) ;
var first = Vector3 . Cross ( A , B ) ;
var second = Vector3 . Cross ( first , C ) ;
return new Vector2 ( second . X , second . Y ) ;
}
private static Vector2 Direction ( Vector2 a , Vector2 b )
{
var d = TripleProduct ( a , b , a ) ;
var collinear = d = = Vector2 . Zero ;
return collinear ? new Vector2 ( a . Y , - a . X ) : d ;
}
private static bool SameDirection ( Vector2 a , Vector2 b )
{
return Vector2 . Dot ( a , b ) > 0 ;
}
private static Vector2 Perpendicular ( Vector2 a , Vector2 b )
{
return TripleProduct ( a , b , a ) ;
}
}
}