201 lines
5.2 KiB
HLSL
201 lines
5.2 KiB
HLSL
#include "Macros.fxh" //from FNA
|
|
|
|
static const float PI = 3.141592653589793;
|
|
static const int MAX_POINT_LIGHTS = 64;
|
|
|
|
DECLARE_TEXTURE(gPosition, 0);
|
|
DECLARE_TEXTURE(gAlbedo, 1);
|
|
DECLARE_TEXTURE(gNormal, 2);
|
|
DECLARE_TEXTURE(gMetallicRoughness, 3);
|
|
DECLARE_TEXTURE(shadowMap, 4);
|
|
|
|
BEGIN_CONSTANTS
|
|
|
|
float3 EyePosition _ps(c0) _cb(c0);
|
|
|
|
float3 PointLightPositions[MAX_POINT_LIGHTS] _ps(c1) _cb(c1);
|
|
float3 PointLightColors[MAX_POINT_LIGHTS] _ps(c65) _cb(c65);
|
|
|
|
float3 DirectionalLightDirection _ps(c129) _cb(c129);
|
|
float3 DirectionalLightColor _ps(c130) _cb(c130);
|
|
|
|
MATRIX_CONSTANTS
|
|
|
|
float4x4 LightSpaceMatrix _ps(c131) _cb(c131);
|
|
|
|
END_CONSTANTS
|
|
|
|
struct PixelInput
|
|
{
|
|
float4 Position : SV_POSITION;
|
|
float2 TexCoord : TEXCOORD0;
|
|
};
|
|
|
|
// Pixel Shader
|
|
|
|
float3 FresnelSchlick(float cosTheta, float3 F0)
|
|
{
|
|
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
|
}
|
|
|
|
float DistributionGGX(float3 N, float3 H, float roughness)
|
|
{
|
|
float a = roughness * roughness;
|
|
float a2 = a * a;
|
|
float NdotH = max(dot(N, H), 0.0);
|
|
float NdotH2 = NdotH * NdotH;
|
|
|
|
float num = a2;
|
|
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
|
denom = PI * denom * denom;
|
|
|
|
return num / denom;
|
|
}
|
|
|
|
float GeometrySchlickGGX(float NdotV, float roughness)
|
|
{
|
|
float r = (roughness + 1.0);
|
|
float k = (r * r) / 8.0;
|
|
|
|
float num = NdotV;
|
|
float denom = NdotV * (1.0 - k) + k;
|
|
|
|
return num / denom;
|
|
}
|
|
|
|
float GeometrySmith(float3 N, float3 V, float3 L, float roughness)
|
|
{
|
|
float NdotV = max(dot(N, V), 0.0);
|
|
float NdotL = max(dot(N, L), 0.0);
|
|
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
|
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
|
|
|
return ggx1 * ggx2;
|
|
}
|
|
|
|
float ComputeShadow(float4 positionLightSpace, float3 N, float L)
|
|
{
|
|
float bias = 0.005 * tan(acos(dot(N, L)));
|
|
bias = clamp(bias, 0, 0.01);
|
|
|
|
// maps to [-1, 1]
|
|
float3 projectionCoords = positionLightSpace.xyz / positionLightSpace.w;
|
|
|
|
// maps to [0, 1]
|
|
projectionCoords.x = (projectionCoords.x * 0.5) + 0.5;
|
|
projectionCoords.y = (projectionCoords.y * 0.5) + 0.5;
|
|
projectionCoords.y *= -1;
|
|
|
|
float closestDepth = SAMPLE_TEXTURE(shadowMap, projectionCoords.xy).r;
|
|
float currentDepth = projectionCoords.z;
|
|
|
|
if (currentDepth - bias > closestDepth)
|
|
{
|
|
return 1.0;
|
|
}
|
|
else
|
|
{
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
float3 ComputeLight(
|
|
float3 L,
|
|
float3 radiance,
|
|
float3 F0,
|
|
float3 V,
|
|
float3 N,
|
|
float3 albedo,
|
|
float metallic,
|
|
float roughness,
|
|
float shadow
|
|
) {
|
|
float3 H = normalize(V + L);
|
|
|
|
float NDF = DistributionGGX(N, H, roughness);
|
|
float G = GeometrySmith(N, V, L, roughness);
|
|
float3 F = FresnelSchlick(max(dot(H, V), 0.0), F0);
|
|
|
|
float3 numerator = NDF * G * F;
|
|
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0);
|
|
float3 specular = numerator / max(denominator, 0.001);
|
|
|
|
float3 kS = F;
|
|
float3 kD = float3(1.0, 1.0, 1.0) - kS;
|
|
|
|
kD *= 1.0 - metallic;
|
|
|
|
float NdotL = max(dot(N, L), 0.0);
|
|
return (kD * albedo / PI + specular) * radiance * NdotL * shadow;
|
|
}
|
|
|
|
float4 ComputeColor(
|
|
float3 worldPosition,
|
|
float3 worldNormal,
|
|
float3 albedo,
|
|
float metallic,
|
|
float roughness
|
|
) {
|
|
float3 V = normalize(EyePosition - worldPosition);
|
|
float3 N = normalize(worldNormal);
|
|
|
|
float3 F0 = float3(0.04, 0.04, 0.04);
|
|
F0 = lerp(F0, albedo, metallic);
|
|
|
|
float3 Lo = float3(0.0, 0.0, 0.0);
|
|
|
|
// point light
|
|
for (int i = 0; i < MAX_POINT_LIGHTS; i++)
|
|
{
|
|
float3 lightDir = PointLightPositions[i] - worldPosition;
|
|
float3 L = normalize(lightDir);
|
|
float distance = length(lightDir);
|
|
float attenuation = 1.0 / (distance * distance);
|
|
float3 radiance = PointLightColors[i] * attenuation;
|
|
|
|
Lo += ComputeLight(L, radiance, F0, V, N, albedo, metallic, roughness, 1.0);
|
|
}
|
|
|
|
// directional light
|
|
float3 L = normalize(DirectionalLightDirection);
|
|
float3 radiance = DirectionalLightColor;
|
|
|
|
float4 positionLightSpace = mul(float4(worldPosition, 1.0), LightSpaceMatrix);
|
|
float shadow = ComputeShadow(positionLightSpace, N, L);
|
|
|
|
Lo += ComputeLight(L, radiance, F0, V, N, albedo, metallic, roughness, (1.0 - shadow));
|
|
|
|
float3 ambient = float3(0.03, 0.03, 0.03) * albedo; // * AO;
|
|
float3 color = ambient + Lo;
|
|
|
|
color = color / (color + float3(1.0, 1.0, 1.0));
|
|
float exposureConstant = 1.0 / 2.2;
|
|
color = pow(color, float3(exposureConstant, exposureConstant, exposureConstant));
|
|
|
|
return float4(color, 1.0);
|
|
}
|
|
|
|
float4 main_ps(PixelInput input) : SV_TARGET0
|
|
{
|
|
float3 worldPosition = SAMPLE_TEXTURE(gPosition, input.TexCoord).rgb;
|
|
float3 normal = SAMPLE_TEXTURE(gNormal, input.TexCoord).xyz;
|
|
float3 albedo = SAMPLE_TEXTURE(gAlbedo, input.TexCoord).rgb;
|
|
float2 metallicRoughness = SAMPLE_TEXTURE(gMetallicRoughness, input.TexCoord).rg;
|
|
|
|
return ComputeColor(
|
|
worldPosition,
|
|
normal,
|
|
albedo,
|
|
metallicRoughness.r,
|
|
metallicRoughness.g
|
|
);
|
|
}
|
|
|
|
Technique DeferredPBR
|
|
{
|
|
Pass
|
|
{
|
|
PixelShader = compile ps_3_0 main_ps();
|
|
}
|
|
}
|