rewrite PBREffect
parent
f0ffc1746c
commit
466f35b1ee
|
@ -0,0 +1,57 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// Macros.fxh
|
||||
//
|
||||
// Microsoft XNA Community Game Platform
|
||||
// Copyright (C) Microsoft Corporation. All rights reserved.
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
#ifdef SM4
|
||||
|
||||
|
||||
// Macros for targetting shader model 4.0 (DX11)
|
||||
|
||||
#define BEGIN_CONSTANTS cbuffer Parameters : register(b0) {
|
||||
#define MATRIX_CONSTANTS }; cbuffer ProjectionMatrix : register(b1) {
|
||||
#define END_CONSTANTS };
|
||||
|
||||
#define _vs(r)
|
||||
#define _ps(r)
|
||||
#define _cb(r) : packoffset(r)
|
||||
|
||||
#define DECLARE_TEXTURE(Name, index) \
|
||||
Texture2D<float4> Name : register(t##index); \
|
||||
sampler Name##Sampler : register(s##index)
|
||||
|
||||
#define DECLARE_CUBEMAP(Name, index) \
|
||||
TextureCube<float4> Name : register(t##index); \
|
||||
sampler Name##Sampler : register(s##index)
|
||||
|
||||
#define SAMPLE_TEXTURE(Name, texCoord) Name.Sample(Name##Sampler, texCoord)
|
||||
#define SAMPLE_CUBEMAP(Name, texCoord) Name.Sample(Name##Sampler, texCoord)
|
||||
#define SAMPLE_CUBEMAP_LOD(Name, texCoord) Name.SampleLevel(Name##Sampler, texCoord.xyz, texCoord.w)
|
||||
|
||||
#else
|
||||
|
||||
|
||||
// Macros for targetting shader model 2.0 (DX9)
|
||||
|
||||
#define BEGIN_CONSTANTS
|
||||
#define MATRIX_CONSTANTS
|
||||
#define END_CONSTANTS
|
||||
|
||||
#define _vs(r) : register(vs, r)
|
||||
#define _ps(r) : register(ps, r)
|
||||
#define _cb(r)
|
||||
|
||||
#define DECLARE_TEXTURE(Name, index) \
|
||||
texture2D Name; \
|
||||
sampler Name##Sampler : register(s##index) = sampler_state { Texture = (Name); };
|
||||
|
||||
#define DECLARE_CUBEMAP(Name, index) \
|
||||
textureCUBE Name; \
|
||||
sampler Name##Sampler : register(s##index) = sampler_state { Texture = (Name); };
|
||||
|
||||
#define SAMPLE_TEXTURE(Name, texCoord) tex2D(Name##Sampler, texCoord)
|
||||
#define SAMPLE_CUBEMAP(Name, texCoord) texCUBE(Name##Sampler, texCoord)
|
||||
#define SAMPLE_CUBEMAP_LOD(Name, texCoord) texCUBElod(Name##Sampler, texCoord)
|
||||
#endif
|
|
@ -6,71 +6,48 @@ namespace Smuggler
|
|||
public struct PBRLight
|
||||
{
|
||||
public Vector3 direction;
|
||||
public Vector3 radiance;
|
||||
public Vector3 colour;
|
||||
|
||||
public PBRLight(Vector3 direction, Vector3 radiance)
|
||||
public PBRLight(Vector3 direction, Vector3 colour)
|
||||
{
|
||||
this.direction = direction;
|
||||
this.radiance = radiance;
|
||||
}
|
||||
}
|
||||
|
||||
public class PBRLightCollection
|
||||
{
|
||||
readonly EffectParameter directionParam;
|
||||
readonly EffectParameter radianceParam;
|
||||
|
||||
private readonly Vector3[] directions = new Vector3[PBREffect.NUM_LIGHTS];
|
||||
private readonly Vector3[] radiances = new Vector3[PBREffect.NUM_LIGHTS];
|
||||
|
||||
public PBRLightCollection(EffectParameter directionParam, EffectParameter radianceParam)
|
||||
{
|
||||
this.directionParam = directionParam;
|
||||
this.radianceParam = radianceParam;
|
||||
}
|
||||
|
||||
public PBRLightCollection(PBRLightCollection other)
|
||||
{
|
||||
for (int i = 0; i < PBREffect.NUM_LIGHTS; i++)
|
||||
{
|
||||
directions[i] = other.directions[i];
|
||||
radiances[i] = other.radiances[i];
|
||||
}
|
||||
}
|
||||
|
||||
public PBRLight this[int index]
|
||||
{
|
||||
get
|
||||
{
|
||||
return new PBRLight(directions[index], radiances[index]);
|
||||
}
|
||||
|
||||
set
|
||||
{
|
||||
directions[index] = value.direction;
|
||||
radiances[index] = value.radiance;
|
||||
directionParam.SetValue(directions);
|
||||
radianceParam.SetValue(radiances);
|
||||
}
|
||||
this.colour = colour;
|
||||
}
|
||||
}
|
||||
|
||||
public class PBREffect : Effect
|
||||
{
|
||||
public static readonly int NUM_LIGHTS = 3;
|
||||
readonly EffectParameter modelParam;
|
||||
readonly EffectParameter viewParam;
|
||||
readonly EffectParameter projectionParam;
|
||||
readonly EffectParameter lightDirParam;
|
||||
readonly EffectParameter lightColourParam;
|
||||
readonly EffectParameter normalScaleParam;
|
||||
readonly EffectParameter emissiveFactorParam;
|
||||
readonly EffectParameter occlusionStrengthParam;
|
||||
readonly EffectParameter metallicRoughnessValuesParam;
|
||||
readonly EffectParameter baseColorFactorParam;
|
||||
readonly EffectParameter cameraLookParam;
|
||||
|
||||
readonly EffectParameter viewProjectionParam;
|
||||
readonly EffectParameter sceneRotationParam;
|
||||
readonly EffectParameter eyePositionParam;
|
||||
readonly EffectParameter specularTextureLevelsParam;
|
||||
|
||||
readonly EffectParameter albedoTextureParam;
|
||||
readonly EffectParameter baseColourTextureParam;
|
||||
readonly EffectParameter normalTextureParam;
|
||||
readonly EffectParameter emissionTextureParam;
|
||||
readonly EffectParameter occlusionTextureParam;
|
||||
readonly EffectParameter metallicRoughnessTextureParam;
|
||||
readonly EffectParameter envDiffuseTextureParam;
|
||||
readonly EffectParameter brdfLutTextureParam;
|
||||
readonly EffectParameter envSpecularTextureParam;
|
||||
|
||||
Matrix world = Matrix.Identity;
|
||||
Matrix view = Matrix.Identity;
|
||||
Matrix projection = Matrix.Identity;
|
||||
Vector3 eyePosition = Vector3.Zero;
|
||||
int specularTextureLevels = 0;
|
||||
PBRLight light = new PBRLight();
|
||||
float normalScale = 1;
|
||||
Vector3 emissiveFactor;
|
||||
float occlusionStrength;
|
||||
Vector2 metallicRoughnessValue;
|
||||
Vector4 baseColorFactor;
|
||||
Vector3 cameraLook;
|
||||
|
||||
public Matrix World
|
||||
{
|
||||
|
@ -78,7 +55,7 @@ namespace Smuggler
|
|||
set
|
||||
{
|
||||
world = value;
|
||||
sceneRotationParam.SetValue(world);
|
||||
modelParam.SetValue(world);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -88,8 +65,7 @@ namespace Smuggler
|
|||
set
|
||||
{
|
||||
view = value;
|
||||
viewProjectionParam.SetValue(projection * view);
|
||||
eyePositionParam.SetValue(Matrix.Invert(view).Backward);
|
||||
viewParam.SetValue(view);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -99,51 +75,201 @@ namespace Smuggler
|
|||
set
|
||||
{
|
||||
projection = value;
|
||||
viewProjectionParam.SetValue(projection * view);
|
||||
projectionParam.SetValue(value);
|
||||
}
|
||||
}
|
||||
|
||||
public PBRLightCollection Lights { get; }
|
||||
|
||||
public int SpecularTextureLevels
|
||||
public PBRLight Light
|
||||
{
|
||||
get { return specularTextureLevels; }
|
||||
get { return light; }
|
||||
set
|
||||
{
|
||||
specularTextureLevels = value;
|
||||
specularTextureLevelsParam.SetValue(specularTextureLevels);
|
||||
light = value;
|
||||
lightDirParam.SetValue(light.direction);
|
||||
lightColourParam.SetValue(light.colour);
|
||||
}
|
||||
}
|
||||
|
||||
public Texture2D AlbedoTexture
|
||||
public float NormalScale
|
||||
{
|
||||
get { return albedoTextureParam.GetValueTexture2D(); }
|
||||
set { albedoTextureParam.SetValue(value); }
|
||||
get { return normalScale; }
|
||||
set
|
||||
{
|
||||
normalScale = value;
|
||||
normalScaleParam.SetValue(normalScale);
|
||||
}
|
||||
}
|
||||
|
||||
public Vector3 EmissiveFactor
|
||||
{
|
||||
get { return emissiveFactor; }
|
||||
set
|
||||
{
|
||||
emissiveFactor = value;
|
||||
emissiveFactorParam.SetValue(emissiveFactor);
|
||||
}
|
||||
}
|
||||
|
||||
public float OcclusionStrength
|
||||
{
|
||||
get { return occlusionStrength; }
|
||||
set
|
||||
{
|
||||
occlusionStrength = value;
|
||||
occlusionStrengthParam.SetValue(occlusionStrength);
|
||||
}
|
||||
}
|
||||
|
||||
public Vector2 MetallicRoughnessValue
|
||||
{
|
||||
get { return metallicRoughnessValue; }
|
||||
set
|
||||
{
|
||||
metallicRoughnessValue = value;
|
||||
metallicRoughnessValuesParam.SetValue(metallicRoughnessValue);
|
||||
}
|
||||
}
|
||||
|
||||
public Vector4 BaseColorFactor
|
||||
{
|
||||
get { return baseColorFactor; }
|
||||
set
|
||||
{
|
||||
baseColorFactor = value;
|
||||
baseColorFactorParam.SetValue(baseColorFactor);
|
||||
}
|
||||
}
|
||||
|
||||
public Vector3 CameraLook
|
||||
{
|
||||
get { return cameraLook; }
|
||||
set
|
||||
{
|
||||
cameraLook = value;
|
||||
cameraLookParam.SetValue(cameraLook);
|
||||
}
|
||||
}
|
||||
|
||||
public Texture2D BaseColourTexture
|
||||
{
|
||||
get { return baseColourTextureParam.GetValueTexture2D(); }
|
||||
set { baseColourTextureParam.SetValue(value); }
|
||||
}
|
||||
|
||||
public Texture2D NormalTexture
|
||||
{
|
||||
get { return normalTextureParam.GetValueTexture2D(); }
|
||||
set { normalTextureParam.SetValue(value); }
|
||||
}
|
||||
|
||||
public Texture2D EmissionTexture
|
||||
{
|
||||
get { return emissionTextureParam.GetValueTexture2D(); }
|
||||
set { emissionTextureParam.SetValue(value); }
|
||||
}
|
||||
|
||||
public Texture2D OcclusionTexture
|
||||
{
|
||||
get { return occlusionTextureParam.GetValueTexture2D(); }
|
||||
set { occlusionTextureParam.SetValue(value); }
|
||||
}
|
||||
|
||||
public Texture2D MetallicRoughnessTexture
|
||||
{
|
||||
get { return metallicRoughnessTextureParam.GetValueTexture2D(); }
|
||||
set { metallicRoughnessTextureParam.SetValue(value); }
|
||||
}
|
||||
|
||||
public TextureCube EnvDiffuseTexture
|
||||
{
|
||||
get { return envDiffuseTextureParam.GetValueTextureCube(); }
|
||||
set { envDiffuseTextureParam.SetValue(value); }
|
||||
}
|
||||
|
||||
public Texture2D BRDFLutTexture
|
||||
{
|
||||
get { return brdfLutTextureParam.GetValueTexture2D(); }
|
||||
set { brdfLutTextureParam.SetValue(value); }
|
||||
}
|
||||
|
||||
public TextureCube EnvSpecularTexture
|
||||
{
|
||||
get { return envSpecularTextureParam.GetValueTextureCube(); }
|
||||
set { envSpecularTextureParam.SetValue(value); }
|
||||
}
|
||||
|
||||
public PBREffect(GraphicsDevice graphicsDevice, byte[] effectCode) : base(graphicsDevice, effectCode)
|
||||
{
|
||||
viewProjectionParam = Parameters["viewProjectionMatrix"];
|
||||
sceneRotationParam = Parameters["sceneRotationMatrix"];
|
||||
modelParam = Parameters["model"];
|
||||
viewParam = Parameters["view"];
|
||||
projectionParam = Parameters["param"];
|
||||
|
||||
eyePositionParam = Parameters["eyePosition"];
|
||||
specularTextureLevelsParam = Parameters["specularTextureLevels"];
|
||||
lightDirParam = Parameters["lightDir"];
|
||||
lightColourParam = Parameters["lightColour"];
|
||||
|
||||
Lights = new PBRLightCollection(Parameters["directions"], Parameters["radiance"]);
|
||||
normalScaleParam = Parameters["normalScale"];
|
||||
emissiveFactorParam = Parameters["emissiveFactor"];
|
||||
occlusionStrengthParam = Parameters["occlusionStrength"];
|
||||
metallicRoughnessValuesParam = Parameters["metallicRoughnessValues"];
|
||||
baseColorFactorParam = Parameters["baseColorFactor"];
|
||||
cameraLookParam = Parameters["camera"];
|
||||
|
||||
baseColourTextureParam = Parameters["baseColourTexture"];
|
||||
normalTextureParam = Parameters["normalTexture"];
|
||||
emissionTextureParam = Parameters["emissionTexture"];
|
||||
occlusionTextureParam = Parameters["occlusionTexture"];
|
||||
metallicRoughnessTextureParam = Parameters["metallicRoughnessTexture"];
|
||||
envDiffuseTextureParam = Parameters["envDiffuseTexture"];
|
||||
brdfLutTextureParam = Parameters["brdfLutTexture"];
|
||||
envSpecularTextureParam = Parameters["envSpecularTexture"];
|
||||
}
|
||||
|
||||
protected PBREffect(PBREffect cloneSource) : base(cloneSource)
|
||||
{
|
||||
viewProjectionParam = Parameters["viewProjectionMatrix"];
|
||||
sceneRotationParam = Parameters["sceneRotationMatrix"];
|
||||
modelParam = Parameters["model"];
|
||||
viewParam = Parameters["view"];
|
||||
projectionParam = Parameters["param"];
|
||||
|
||||
eyePositionParam = Parameters["eyePosition"];
|
||||
specularTextureLevelsParam = Parameters["specularTextureLevels"];
|
||||
lightDirParam = Parameters["lightDir"];
|
||||
lightColourParam = Parameters["lightColour"];
|
||||
|
||||
normalScaleParam = Parameters["normalScale"];
|
||||
emissiveFactorParam = Parameters["emissiveFactor"];
|
||||
occlusionStrengthParam = Parameters["occlusionStrength"];
|
||||
metallicRoughnessValuesParam = Parameters["metallicRoughnessValues"];
|
||||
baseColorFactorParam = Parameters["baseColorFactor"];
|
||||
cameraLookParam = Parameters["camera"];
|
||||
|
||||
baseColourTextureParam = Parameters["baseColourTexture"];
|
||||
normalTextureParam = Parameters["normalTexture"];
|
||||
emissionTextureParam = Parameters["emissionTexture"];
|
||||
occlusionTextureParam = Parameters["occlusionTexture"];
|
||||
metallicRoughnessTextureParam = Parameters["metallicRoughnessTexture"];
|
||||
envDiffuseTextureParam = Parameters["envDiffuseTexture"];
|
||||
brdfLutTextureParam = Parameters["brdfLutTexture"];
|
||||
envSpecularTextureParam = Parameters["envSpecularTexture"];
|
||||
|
||||
World = cloneSource.World;
|
||||
View = cloneSource.View;
|
||||
Projection = cloneSource.Projection;
|
||||
Lights = new PBRLightCollection(cloneSource.Lights);
|
||||
|
||||
Light = cloneSource.Light;
|
||||
|
||||
NormalScale = cloneSource.normalScale;
|
||||
EmissiveFactor = cloneSource.EmissiveFactor;
|
||||
OcclusionStrength = cloneSource.OcclusionStrength;
|
||||
MetallicRoughnessValue = cloneSource.MetallicRoughnessValue;
|
||||
BaseColorFactor = cloneSource.BaseColorFactor;
|
||||
CameraLook = cloneSource.CameraLook;
|
||||
|
||||
BaseColourTexture = cloneSource.BaseColourTexture;
|
||||
NormalTexture = cloneSource.NormalTexture;
|
||||
EmissionTexture = cloneSource.EmissionTexture;
|
||||
OcclusionTexture = cloneSource.OcclusionTexture;
|
||||
MetallicRoughnessTexture = cloneSource.MetallicRoughnessTexture;
|
||||
EnvDiffuseTexture = cloneSource.EnvDiffuseTexture;
|
||||
BRDFLutTexture = cloneSource.BRDFLutTexture;
|
||||
EnvSpecularTexture = cloneSource.EnvSpecularTexture;
|
||||
}
|
||||
|
||||
public override Effect Clone()
|
||||
|
|
535
Effects/pbr.fx
535
Effects/pbr.fx
|
@ -1,215 +1,406 @@
|
|||
// Physically Based Rendering
|
||||
// Copyright (c) 2017-2018 Michał Siejak
|
||||
|
||||
// Physically Based shading model: Lambetrtian diffuse BRDF + Cook-Torrance microfacet specular BRDF + IBL for ambient.
|
||||
#include "Macros.fxh"
|
||||
|
||||
// This implementation is based on "Real Shading in Unreal Engine 4" SIGGRAPH 2013 course notes by Epic Games.
|
||||
// See: http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
|
||||
#define NORMALS
|
||||
#define UV
|
||||
|
||||
static const float PI = 3.141592;
|
||||
static const float Epsilon = 0.00001;
|
||||
|
||||
static const uint NumLights = 3;
|
||||
|
||||
// Constant normal incidence Fresnel factor for all dielectrics.
|
||||
static const float3 Fdielectric = 0.04;
|
||||
|
||||
// UNIFORM CONSTANTS
|
||||
float4x4 viewProjectionMatrix;
|
||||
float4x4 sceneRotationMatrix;
|
||||
|
||||
float3 direction[NumLights];
|
||||
float3 radiance[NumLights];
|
||||
|
||||
float3 eyePosition;
|
||||
int specularTextureLevels;
|
||||
// A constant buffer that stores the three basic column-major matrices for composing geometry.
|
||||
cbuffer ModelViewProjectionConstantBuffer : register(b0)
|
||||
{
|
||||
matrix model;
|
||||
matrix view;
|
||||
matrix projection;
|
||||
};
|
||||
|
||||
// Per-vertex data used as input to the vertex shader.
|
||||
struct VertexShaderInput
|
||||
{
|
||||
float3 position : POSITION;
|
||||
float4 position : POSITION;
|
||||
#ifdef NORMALS
|
||||
float3 normal : NORMAL;
|
||||
float3 tangent : TANGENT;
|
||||
float3 binormal : BINORMAL;
|
||||
float2 texcoord : TEXCOORD;
|
||||
#endif
|
||||
#ifdef UV
|
||||
float2 texcoord : TEXCOORD0;
|
||||
#endif
|
||||
};
|
||||
|
||||
// Per-pixel color data passed through the pixel shader.
|
||||
struct PixelShaderInput
|
||||
{
|
||||
float4 pixelPosition : SV_POSITION;
|
||||
float3 position : POSITION1;
|
||||
float4 position : SV_POSITION;
|
||||
float3 poswithoutw : POSITION1;
|
||||
|
||||
#ifdef NORMALS
|
||||
float3 normal : NORMAL;
|
||||
#endif
|
||||
|
||||
float2 texcoord : TEXCOORD0;
|
||||
float3 T : TEXCOORD1;
|
||||
float3 B : TEXCOORD2;
|
||||
float3 N : TEXCOORD3;
|
||||
};
|
||||
|
||||
sampler albedoTexture : register(s0);
|
||||
sampler normalTexture : register(s1);
|
||||
sampler metalnessTexture : register(s2);
|
||||
sampler roughnessTexture : register(s3);
|
||||
sampler specularTexture : register(s4);
|
||||
sampler irradianceTexture : register(s5);
|
||||
sampler specularBRDF_LUT : register(s6);
|
||||
|
||||
// GGX/Towbridge-Reitz normal distribution function.
|
||||
// Uses Disney's reparametrization of alpha = roughness^2.
|
||||
float ndfGGX(float cosLh, float roughness)
|
||||
PixelShaderInput main_vs(VertexShaderInput input)
|
||||
{
|
||||
float alpha = roughness * roughness;
|
||||
float alphaSq = alpha * alpha;
|
||||
PixelShaderInput output;
|
||||
|
||||
float denom = (cosLh * cosLh) * (alphaSq - 1.0) + 1.0;
|
||||
return alphaSq / (PI * denom * denom);
|
||||
// Transform the vertex position into projected space.
|
||||
float4 pos = mul(input.position, model);
|
||||
output.poswithoutw = float3(pos.xyz) / pos.w;
|
||||
|
||||
#ifdef NORMALS
|
||||
// If we have normals...
|
||||
output.normal = normalize(mul(float4(input.normal.xyz, 0.0), model));
|
||||
#endif
|
||||
|
||||
#ifdef UV
|
||||
output.texcoord = input.texcoord;
|
||||
#else
|
||||
output.texcoord = float2(0.0f, 0.0f);
|
||||
#endif
|
||||
|
||||
#ifdef HAS_NORMALS
|
||||
#ifdef HAS_TANGENTS
|
||||
vec3 normalW = normalize(vec3(u_ModelMatrix * vec4(a_Normal.xyz, 0.0)));
|
||||
vec3 tangentW = normalize(vec3(u_ModelMatrix * vec4(a_Tangent.xyz, 0.0)));
|
||||
vec3 bitangentW = cross(normalW, tangentW) * a_Tangent.w;
|
||||
v_TBN = mat3(tangentW, bitangentW, normalW);
|
||||
#else // HAS_TANGENTS != 1
|
||||
v_Normal = normalize(vec3(u_ModelMatrix * vec4(a_Normal.xyz, 0.0)));
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Transform the vertex position into projected space.
|
||||
pos = mul(pos, view);
|
||||
pos = mul(pos, projection);
|
||||
output.position = pos;
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
// Single term for separable Schlick-GGX below.
|
||||
float gaSchlickG1(float cosTheta, float k)
|
||||
//
|
||||
// This fragment shader defines a reference implementation for Physically Based Shading of
|
||||
// a microfacet surface material defined by a glTF model.
|
||||
//
|
||||
// References:
|
||||
// [1] Real Shading in Unreal Engine 4
|
||||
// http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
|
||||
// [2] Physically Based Shading at Disney
|
||||
// http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
|
||||
// [3] README.md - Environment Maps
|
||||
// https://github.com/KhronosGroup/glTF-WebGL-PBR/#environment-maps
|
||||
// [4] "An Inexpensive BRDF Model for Physically based Rendering" by Christophe Schlick
|
||||
// https://www.cs.virginia.edu/~jdl/bib/appearance/analytic%20models/schlick94b.pdf
|
||||
|
||||
#define NORMALS
|
||||
#define UV
|
||||
#define HAS_NORMALS
|
||||
#define USE_IBL
|
||||
#define USE_TEX_LOD
|
||||
|
||||
DECLARE_TEXTURE(baseColourTexture, 0);
|
||||
DECLARE_TEXTURE(normalTexture, 1);
|
||||
DECLARE_TEXTURE(emissionTexture, 2);
|
||||
DECLARE_TEXTURE(occlusionTexture, 3);
|
||||
DECLARE_TEXTURE(metallicRoughnessTexture, 4);
|
||||
DECLARE_CUBEMAP(envDiffuseTexture, 8);
|
||||
DECLARE_TEXTURE(brdfLutTexture, 9);
|
||||
DECLARE_CUBEMAP(envSpecularTexture, 10);
|
||||
|
||||
cbuffer cbPerFrame : register(b0)
|
||||
{
|
||||
return cosTheta / (cosTheta * (1.0 - k) + k);
|
||||
float3 lightDir;
|
||||
float3 lightColour;
|
||||
};
|
||||
|
||||
cbuffer cbPerObject : register(b1)
|
||||
{
|
||||
float normalScale;
|
||||
float3 emissiveFactor;
|
||||
float occlusionStrength;
|
||||
float2 metallicRoughnessValues;
|
||||
float4 baseColorFactor;
|
||||
float3 camera;
|
||||
|
||||
// debugging flags used for shader output of intermediate PBR variables
|
||||
float4 scaleDiffBaseMR;
|
||||
float4 scaleFGDSpec;
|
||||
float4 scaleIBLAmbient;
|
||||
};
|
||||
|
||||
#ifdef HAS_NORMALS
|
||||
#ifdef HAS_TANGENTS
|
||||
varying mat3 v_TBN;
|
||||
#else
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Encapsulate the various inputs used by the various functions in the shading equation
|
||||
// We store values in this struct to simplify the integration of alternative implementations
|
||||
// of the shading terms, outlined in the Readme.MD Appendix.
|
||||
struct PBRInfo
|
||||
{
|
||||
float NdotL; // cos angle between normal and light direction
|
||||
float NdotV; // cos angle between normal and view direction
|
||||
float NdotH; // cos angle between normal and half vector
|
||||
float LdotH; // cos angle between light direction and half vector
|
||||
float VdotH; // cos angle between view direction and half vector
|
||||
float perceptualRoughness; // roughness value, as authored by the model creator (input to shader)
|
||||
float metalness; // metallic value at the surface
|
||||
float3 reflectance0; // full reflectance color (normal incidence angle)
|
||||
float3 reflectance90; // reflectance color at grazing angle
|
||||
float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2])
|
||||
float3 diffuseColor; // color contribution from diffuse lighting
|
||||
float3 specularColor; // color contribution from specular lighting
|
||||
};
|
||||
|
||||
static const float M_PI = 3.141592653589793;
|
||||
static const float c_MinRoughness = 0.04;
|
||||
|
||||
float4 SRGBtoLINEAR(float4 srgbIn)
|
||||
{
|
||||
#ifdef MANUAL_SRGB
|
||||
#ifdef SRGB_FAST_APPROXIMATION
|
||||
float3 linOut = pow(srgbIn.xyz,float3(2.2, 2.2, 2.2));
|
||||
#else //SRGB_FAST_APPROXIMATION
|
||||
float3 bLess = step(float3(0.04045, 0.04045, 0.04045), srgbIn.xyz);
|
||||
float3 linOut = lerp(srgbIn.xyz / float3(12.92, 12.92, 12.92), pow((srgbIn.xyz + float3(0.055, 0.055, 0.055)) / float3(1.055, 1.055, 1.055), float3(2.4, 2.4, 2.4)), bLess);
|
||||
#endif //SRGB_FAST_APPROXIMATION
|
||||
return float4(linOut,srgbIn.w);;
|
||||
#else //MANUAL_SRGB
|
||||
return srgbIn;
|
||||
#endif //MANUAL_SRGB
|
||||
}
|
||||
|
||||
// Schlick-GGX approximation of geometric attenuation function using Smith's method.
|
||||
float gaSchlickGGX(float cosLi, float cosLo, float roughness)
|
||||
// Find the normal for this fragment, pulling either from a predefined normal map
|
||||
// or from the interpolated mesh normal and tangent attributes.
|
||||
float3 getNormal(float3 position, float3 normal, float2 uv)
|
||||
{
|
||||
float r = roughness + 1.0;
|
||||
float k = (r * r) / 8.0; // Epic suggests using this roughness remapping for analytic lights.
|
||||
return gaSchlickG1(cosLi, k) * gaSchlickG1(cosLo, k);
|
||||
// Retrieve the tangent space matrix
|
||||
#ifndef HAS_TANGENTS
|
||||
float3 pos_dx = ddx(position);
|
||||
float3 pos_dy = ddy(position);
|
||||
float3 tex_dx = ddx(float3(uv, 0.0));
|
||||
float3 tex_dy = ddy(float3(uv, 0.0));
|
||||
float3 t = (tex_dy.y * pos_dx - tex_dx.y * pos_dy) / (tex_dx.x * tex_dy.y - tex_dy.x * tex_dx.y);
|
||||
|
||||
#ifdef HAS_NORMALS
|
||||
float3 ng = normalize(normal);
|
||||
#else
|
||||
float3 ng = cross(pos_dx, pos_dy);
|
||||
#endif
|
||||
|
||||
t = normalize(t - ng * dot(ng, t));
|
||||
float3 b = normalize(cross(ng, t));
|
||||
row_major float3x3 tbn = float3x3(t, b, ng);
|
||||
|
||||
#else // HAS_TANGENTS
|
||||
mat3 tbn = v_TBN;
|
||||
#endif
|
||||
|
||||
#ifdef HAS_NORMALMAP
|
||||
float3 n = SAMPLE_TEXTURE(normalTexture, uv).rgb;
|
||||
|
||||
// Need to check the multiplication is equivalent..
|
||||
n = normalize(mul(((2.0 * n - 1.0) * float3(normalScale, normalScale, 1.0)), tbn));
|
||||
#else
|
||||
float3 n = tbn[2].xyz;
|
||||
#endif
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
// Shlick's approximation of the Fresnel factor.
|
||||
float3 fresnelSchlick(float3 F0, float cosTheta)
|
||||
#ifdef USE_IBL
|
||||
// Calculation of the lighting contribution from an optional Image Based Light source.
|
||||
// Precomputed Environment Maps are required uniform inputs and are computed as outlined in [1].
|
||||
// See our README.md on Environment Maps [3] for additional discussion.
|
||||
float3 getIBLContribution(PBRInfo pbrInputs, float3 n, float3 reflection)
|
||||
{
|
||||
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
float mipCount = 9.0; // resolution of 512x512
|
||||
float lod = (pbrInputs.perceptualRoughness * mipCount);
|
||||
|
||||
// retrieve a scale and bias to F0. See [1], Figure 3
|
||||
float2 val = float2(pbrInputs.NdotV, 1.0 - pbrInputs.perceptualRoughness);
|
||||
float3 brdf = SRGBtoLINEAR(SAMPLE_TEXTURE(brdfLutTexture, val)).rgb;
|
||||
|
||||
float3 diffuseLight = SRGBtoLINEAR(SAMPLE_CUBEMAP(envDiffuseTexture, n)).rgb;
|
||||
|
||||
#ifdef USE_TEX_LOD
|
||||
float4 reflectionWithLOD = float4(reflection, 0);
|
||||
float3 specularLight = SRGBtoLINEAR(SAMPLE_CUBEMAP_LOD(envSpecularTexture, reflectionWithLOD)).rgb;
|
||||
#else
|
||||
float3 specularLight = SRGBtoLINEAR(SAMPLE_CUBEMAP(envSpecularTexture, reflection)).rgb;
|
||||
#endif
|
||||
|
||||
float3 diffuse = diffuseLight * pbrInputs.diffuseColor;
|
||||
float3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y);
|
||||
|
||||
// For presentation, this allows us to disable IBL terms
|
||||
diffuse *= scaleIBLAmbient.x;
|
||||
specular *= scaleIBLAmbient.y;
|
||||
|
||||
return diffuse + specular;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Basic Lambertian diffuse
|
||||
// Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog
|
||||
// See also [1], Equation 1
|
||||
float3 diffuse(PBRInfo pbrInputs)
|
||||
{
|
||||
return pbrInputs.diffuseColor / M_PI;
|
||||
}
|
||||
|
||||
// Vertex shader
|
||||
PixelShaderInput main_vs(VertexShaderInput vin)
|
||||
// The following equation models the Fresnel reflectance term of the spec equation (aka F())
|
||||
// Implementation of fresnel from [4], Equation 15
|
||||
float3 specularReflection(PBRInfo pbrInputs)
|
||||
{
|
||||
PixelShaderInput vout;
|
||||
vout.position = mul(sceneRotationMatrix, float4(vin.position, 1.0)).xyz;
|
||||
vout.texcoord = float2(vin.texcoord.x, 1.0-vin.texcoord.y);
|
||||
|
||||
// Pass tangent space basis vectors (for normal mapping).
|
||||
float3 worldTangent = mul(vin.tangent, (float3x3) sceneRotationMatrix);
|
||||
vout.T = normalize(worldTangent);
|
||||
|
||||
float3 worldBinormal = mul(vin.binormal, (float3x3) sceneRotationMatrix);
|
||||
vout.B = normalize(worldBinormal);
|
||||
|
||||
float3 worldNormal = mul(vin.normal, (float3x3) sceneRotationMatrix);
|
||||
vout.N = normalize(worldNormal);
|
||||
|
||||
float4x4 mvpMatrix = mul(viewProjectionMatrix, sceneRotationMatrix);
|
||||
vout.pixelPosition = mul(mvpMatrix, float4(vin.position, 1.0));
|
||||
return vout;
|
||||
return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0);
|
||||
}
|
||||
|
||||
// Pixel shader
|
||||
float4 main_ps(PixelShaderInput pin) : SV_Target0
|
||||
// This calculates the specular geometric attenuation (aka G()),
|
||||
// where rougher material will reflect less light back to the viewer.
|
||||
// This implementation is based on [1] Equation 4, and we adopt their modifications to
|
||||
// alphaRoughness as input as originally proposed in [2].
|
||||
float geometricOcclusion(PBRInfo pbrInputs)
|
||||
{
|
||||
// Sample input textures to get shading model params.
|
||||
float3 albedo = tex2D(albedoTexture, pin.texcoord).rgb;
|
||||
float metalness = tex2D(metalnessTexture, pin.texcoord).r;
|
||||
float roughness = tex2D(roughnessTexture, pin.texcoord).r;
|
||||
float NdotL = pbrInputs.NdotL;
|
||||
float NdotV = pbrInputs.NdotV;
|
||||
float r = pbrInputs.alphaRoughness;
|
||||
|
||||
// Outgoing light direction (vector from world-space fragment position to the "eye").
|
||||
float3 Lo = normalize(eyePosition - pin.position);
|
||||
|
||||
// tranpose to transform tangent space => world
|
||||
float3x3 TBN = transpose(float3x3(normalize(pin.T), normalize(pin.B), normalize(pin.N)));
|
||||
|
||||
// Get current fragment's normal and transform to world space.
|
||||
float3 tangentNormal = normalize(2.0 * tex2D(normalTexture, pin.texcoord).rgb - 1.0);
|
||||
|
||||
// world normal
|
||||
float3 N = normalize(mul(TBN, tangentNormal));
|
||||
|
||||
// Angle between surface normal and outgoing light direction.
|
||||
float cosLo = max(0.0, dot(N, Lo));
|
||||
|
||||
// Specular reflection vector.
|
||||
float3 Lr = 2.0 * cosLo * N - Lo;
|
||||
|
||||
// Fresnel reflectance at normal incidence (for metals use albedo color).
|
||||
float3 F0 = lerp(Fdielectric, albedo, metalness);
|
||||
|
||||
// Direct lighting calculation for analytical lights.
|
||||
float3 directLighting = 0.0;
|
||||
for(uint i=0; i<NumLights; ++i)
|
||||
{
|
||||
float3 Li = -direction[i];
|
||||
float3 Lradiance = radiance[i];
|
||||
|
||||
// Half-vector between Li and Lo.
|
||||
float3 Lh = normalize(Li + Lo);
|
||||
|
||||
// Calculate angles between surface normal and various light vectors.
|
||||
float cosLi = max(0.0, dot(N, Li));
|
||||
float cosLh = max(0.0, dot(N, Lh));
|
||||
|
||||
// Calculate Fresnel term for direct lighting.
|
||||
float3 F = fresnelSchlick(F0, max(0.0, dot(Lh, Lo)));
|
||||
// Calculate normal distribution for specular BRDF.
|
||||
float D = ndfGGX(cosLh, roughness);
|
||||
// Calculate geometric attenuation for specular BRDF.
|
||||
float G = gaSchlickGGX(cosLi, cosLo, roughness);
|
||||
|
||||
// Diffuse scattering happens due to light being refracted multiple times by a dielectric medium.
|
||||
// Metals on the other hand either reflect or absorb energy, so diffuse contribution is always zero.
|
||||
// To be energy conserving we must scale diffuse BRDF contribution based on Fresnel factor & metalness.
|
||||
float3 kd = lerp(float3(1, 1, 1) - F, float3(0, 0, 0), metalness);
|
||||
|
||||
// Lambert diffuse BRDF.
|
||||
// We don't scale by 1/PI for lighting & material units to be more convenient.
|
||||
// See: https://seblagarde.wordpress.com/2012/01/08/pi-or-not-to-pi-in-game-lighting-equation/
|
||||
float3 diffuseBRDF = kd * albedo;
|
||||
|
||||
// Cook-Torrance specular microfacet BRDF.
|
||||
float3 specularBRDF = (F * D * G) / max(Epsilon, 4.0 * cosLi * cosLo);
|
||||
|
||||
// Total contribution for this light.
|
||||
directLighting += (diffuseBRDF + specularBRDF) * Lradiance * cosLi;
|
||||
float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL)));
|
||||
float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV)));
|
||||
return attenuationL * attenuationV;
|
||||
}
|
||||
|
||||
// Ambient lighting (IBL).
|
||||
float3 ambientLighting;
|
||||
// The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D())
|
||||
// Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz
|
||||
// Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3.
|
||||
float microfacetDistribution(PBRInfo pbrInputs)
|
||||
{
|
||||
// Sample diffuse irradiance at normal direction.
|
||||
float3 irradiance = tex2D(irradianceTexture, N.xy).rgb;
|
||||
|
||||
// Calculate Fresnel term for ambient lighting.
|
||||
// Since we use pre-filtered cubemap(s) and irradiance is coming from many directions
|
||||
// use cosLo instead of angle with light's half-vector (cosLh above).
|
||||
// See: https://seblagarde.wordpress.com/2011/08/17/hello-world/
|
||||
float3 F = fresnelSchlick(F0, cosLo);
|
||||
|
||||
// Get diffuse contribution factor (as with direct lighting).
|
||||
float3 kd = lerp(1.0 - F, 0.0, metalness);
|
||||
|
||||
// Irradiance map contains exitant radiance assuming Lambertian BRDF, no need to scale by 1/PI here either.
|
||||
float3 diffuseIBL = kd * albedo * irradiance;
|
||||
|
||||
// Sample pre-filtered specular reflection environment at correct mipmap level.
|
||||
float4 levelTexCoord = float4(Lr, roughness * specularTextureLevels);
|
||||
float3 specularIrradiance = tex2Dlod(specularTexture, levelTexCoord).rgb;
|
||||
|
||||
// Split-sum approximation factors for Cook-Torrance specular BRDF.
|
||||
float2 specularBRDF = tex2D(specularBRDF_LUT, float2(cosLo, roughness)).rg;
|
||||
|
||||
// Total specular IBL contribution.
|
||||
float3 specularIBL = (F0 * specularBRDF.x + specularBRDF.y) * specularIrradiance;
|
||||
|
||||
// Total ambient lighting contribution.
|
||||
ambientLighting = diffuseIBL + specularIBL;
|
||||
float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness;
|
||||
float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0;
|
||||
return roughnessSq / (M_PI * f * f);
|
||||
}
|
||||
|
||||
// Final fragment color.
|
||||
return float4(directLighting + ambientLighting, 1.0);
|
||||
float4 main_ps(PixelShaderInput input) : SV_TARGET
|
||||
{
|
||||
// Metallic and Roughness material properties are packed together
|
||||
// In glTF, these factors can be specified by fixed scalar values
|
||||
// or from a metallic-roughness map
|
||||
float perceptualRoughness = metallicRoughnessValues.y;
|
||||
float metallic = metallicRoughnessValues.x;
|
||||
|
||||
#ifdef HAS_METALROUGHNESSMAP
|
||||
// Roughness is stored in the 'g' channel, metallic is stored in the 'b' channel.
|
||||
// This layout intentionally reserves the 'r' channel for (optional) occlusion map data
|
||||
float4 mrSample = SAMPLE_TEXTURE(metallicRoughnessTexture, input.texcoord);
|
||||
|
||||
// Had to reverse the order of the channels here - TODO: investigate..
|
||||
perceptualRoughness = mrSample.g * perceptualRoughness;
|
||||
metallic = mrSample.b * metallic;
|
||||
#endif
|
||||
|
||||
perceptualRoughness = clamp(perceptualRoughness, c_MinRoughness, 1.0);
|
||||
metallic = clamp(metallic, 0.0, 1.0);
|
||||
|
||||
// Roughness is authored as perceptual roughness; as is convention,
|
||||
// convert to material roughness by squaring the perceptual roughness [2].
|
||||
float alphaRoughness = perceptualRoughness * perceptualRoughness;
|
||||
|
||||
// The albedo may be defined from a base texture or a flat color
|
||||
|
||||
#ifdef HAS_BASECOLORMAP
|
||||
float4 baseColor = SRGBtoLINEAR(SAMPLE_TEXTURE(baseColourTexture, input.texcoord)) * baseColorFactor;
|
||||
#else
|
||||
float4 baseColor = baseColorFactor;
|
||||
#endif
|
||||
|
||||
float3 f0 = float3(0.04, 0.04, 0.04);
|
||||
float3 diffuseColor = baseColor.rgb * (float3(1.0, 1.0, 1.0) - f0);
|
||||
|
||||
diffuseColor *= 1.0 - metallic;
|
||||
|
||||
float3 specularColor = lerp(f0, baseColor.rgb, metallic);
|
||||
|
||||
// Compute reflectance.
|
||||
float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b);
|
||||
|
||||
// For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect.
|
||||
// For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%.
|
||||
float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0);
|
||||
float3 specularEnvironmentR0 = specularColor.rgb;
|
||||
float3 specularEnvironmentR90 = float3(1.0, 1.0, 1.0) * reflectance90;
|
||||
|
||||
float3 n = getNormal(input.poswithoutw, input.normal, input.texcoord); // normal at surface point
|
||||
float3 v = normalize(camera - input.poswithoutw); // Vector from surface point to camera
|
||||
|
||||
float3 l = normalize(lightDir); // Vector from surface point to light
|
||||
float3 h = normalize(l + v); // Half vector between both l and v
|
||||
float3 reflection = -normalize(reflect(v, n));
|
||||
|
||||
float NdotL = clamp(dot(n, l), 0.001, 1.0);
|
||||
float NdotV = abs(dot(n, v)) + 0.001;
|
||||
float NdotH = clamp(dot(n, h), 0.0, 1.0);
|
||||
float LdotH = clamp(dot(l, h), 0.0, 1.0);
|
||||
float VdotH = clamp(dot(v, h), 0.0, 1.0);
|
||||
|
||||
PBRInfo pbrInputs;
|
||||
pbrInputs.NdotL = NdotL;
|
||||
pbrInputs.NdotV = NdotV;
|
||||
pbrInputs.NdotH = NdotH;
|
||||
pbrInputs.LdotH = LdotH;
|
||||
pbrInputs.VdotH = VdotH;
|
||||
pbrInputs.perceptualRoughness = perceptualRoughness;
|
||||
pbrInputs.metalness = metallic;
|
||||
pbrInputs.reflectance0 = specularEnvironmentR0;
|
||||
pbrInputs.reflectance90 = specularEnvironmentR90;
|
||||
pbrInputs.alphaRoughness = alphaRoughness;
|
||||
pbrInputs.diffuseColor = diffuseColor;
|
||||
pbrInputs.specularColor = specularColor;
|
||||
|
||||
// Calculate the shading terms for the microfacet specular shading model
|
||||
float3 F = specularReflection(pbrInputs);
|
||||
|
||||
float G = geometricOcclusion(pbrInputs);
|
||||
float D = microfacetDistribution(pbrInputs);
|
||||
|
||||
// Calculation of analytical lighting contribution
|
||||
float3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs);
|
||||
float3 specContrib = F * G * D / (4.0 * NdotL * NdotV);
|
||||
float3 color = NdotL * lightColour * (diffuseContrib + specContrib);
|
||||
|
||||
|
||||
// Calculate lighting contribution from image based lighting source (IBL)
|
||||
#ifdef USE_IBL
|
||||
color += getIBLContribution(pbrInputs, n, reflection);
|
||||
#endif
|
||||
|
||||
// Apply optional PBR terms for additional (optional) shading
|
||||
#ifdef HAS_OCCLUSIONMAP
|
||||
float ao = SAMPLE_TEXTURE(occlusionTexture, input.texcoord).r;
|
||||
color = lerp(color, color * ao, occlusionStrength);
|
||||
#endif
|
||||
|
||||
#ifdef HAS_EMISSIVEMAP
|
||||
float3 emissive = SRGBtoLINEAR(SAMPLE_TEXTURE(emissionTexture, input.texcoord)).rgb * emissiveFactor;
|
||||
color += emissive;
|
||||
#endif
|
||||
|
||||
// This section uses lerp to override final color for reference app visualization
|
||||
// of various parameters in the lighting equation.
|
||||
color = lerp(color, F, scaleFGDSpec.x);
|
||||
color = lerp(color, float3(G, G, G), scaleFGDSpec.y);
|
||||
color = lerp(color, float3(D, D, D), scaleFGDSpec.z);
|
||||
color = lerp(color, specContrib, scaleFGDSpec.w);
|
||||
color = lerp(color, diffuseContrib, scaleDiffBaseMR.x);
|
||||
color = lerp(color, baseColor.rgb, scaleDiffBaseMR.y);
|
||||
color = lerp(color, float3(metallic, metallic, metallic), scaleDiffBaseMR.z);
|
||||
color = lerp(color, float3(perceptualRoughness, perceptualRoughness, perceptualRoughness), scaleDiffBaseMR.w);
|
||||
|
||||
return float4(color, 1.0);
|
||||
}
|
||||
|
||||
technique PBR
|
||||
Technique PBR
|
||||
{
|
||||
pass Pass1
|
||||
Pass pass1
|
||||
{
|
||||
VertexShader = compile vs_3_0 main_vs();
|
||||
PixelShader = compile ps_3_0 main_ps();
|
||||
|
|
BIN
Effects/pbr.fxo
BIN
Effects/pbr.fxo
Binary file not shown.
Loading…
Reference in New Issue