add exponentiation functions to Fix64

pull/51/head
cosmonaut 2023-09-07 17:30:35 -07:00
parent 7f6b6a7bae
commit be77e8bad1
1 changed files with 156 additions and 11 deletions

View File

@ -17,6 +17,9 @@ namespace MoonWorks.Math.Fixed
const long PI_TIMES_2 = 0x6487ED511; const long PI_TIMES_2 = 0x6487ED511;
const long PI = 0x3243F6A88; const long PI = 0x3243F6A88;
const long PI_OVER_2 = 0x1921FB544; const long PI_OVER_2 = 0x1921FB544;
const long LN2 = 0xB17217F7;
const long LOG2MAX = 0x1F00000000;
const long LOG2MIN = -0x2000000000;
public static readonly Fix64 MaxValue = new Fix64(MAX_VALUE); public static readonly Fix64 MaxValue = new Fix64(MAX_VALUE);
public static readonly Fix64 MinValue = new Fix64(MIN_VALUE); public static readonly Fix64 MinValue = new Fix64(MIN_VALUE);
@ -28,6 +31,10 @@ namespace MoonWorks.Math.Fixed
public static readonly Fix64 PiOver4 = PiOver2 / new Fix64(2); public static readonly Fix64 PiOver4 = PiOver2 / new Fix64(2);
public static readonly Fix64 PiTimes2 = new Fix64(PI_TIMES_2); public static readonly Fix64 PiTimes2 = new Fix64(PI_TIMES_2);
static readonly Fix64 Ln2 = new Fix64(LN2);
static readonly Fix64 Log2Max = new Fix64(LOG2MAX);
static readonly Fix64 Log2Min = new Fix64(LOG2MIN);
const int LUT_SIZE = (int)(PI_OVER_2 >> 15); const int LUT_SIZE = (int)(PI_OVER_2 >> 15);
static readonly Fix64 LutInterval = (Fix64)(LUT_SIZE - 1) / PiOver2; static readonly Fix64 LutInterval = (Fix64)(LUT_SIZE - 1) / PiOver2;
@ -217,7 +224,145 @@ namespace MoonWorks.Math.Fixed
return Fix64.Floor(value / step) * step; return Fix64.Floor(value / step) * step;
} }
// Trigonometry functions // Exponentiation functions
/// <summary>
/// Returns 2 raised to the specified power.
/// Provides at least 6 decimals of accuracy.
/// </summary>
internal static Fix64 Pow2(Fix64 x)
{
if (x.RawValue == 0)
{
return One;
}
// Avoid negative arguments by exploiting that exp(-x) = 1/exp(x).
bool neg = x.RawValue < 0;
if (neg)
{
x = -x;
}
if (x == One)
{
return neg ? One / (Fix64)2 : (Fix64)2;
}
if (x >= Log2Max)
{
return neg ? One / MaxValue : MaxValue;
}
if (x <= Log2Min)
{
return neg ? MaxValue : Zero;
}
/* The algorithm is based on the power series for exp(x):
* http://en.wikipedia.org/wiki/Exponential_function#Formal_definition
*
* From term n, we get term n+1 by multiplying with x/n.
* When the sum term drops to zero, we can stop summing.
*/
int integerPart = (int)Floor(x);
// Take fractional part of exponent
x = new Fix64(x.RawValue & 0x00000000FFFFFFFF);
var result = One;
var term = One;
int i = 1;
while (term.RawValue != 0)
{
term = FastMul(FastMul(x, term), Ln2) / (Fix64)i;
result += term;
i++;
}
result = new Fix64(result.RawValue << integerPart);
if (neg)
{
result = One / result;
}
return result;
}
/// <summary>
/// Returns the base-2 logarithm of a specified number.
/// Provides at least 9 decimals of accuracy.
/// </summary>
/// <exception cref="ArgumentOutOfRangeException">
/// The argument was non-positive
/// </exception>
internal static Fix64 Log2(Fix64 x)
{
if (x.RawValue <= 0)
{
throw new ArgumentOutOfRangeException("Non-positive value passed to Ln", "x");
}
// This implementation is based on Clay. S. Turner's fast binary logarithm
// algorithm (C. S. Turner, "A Fast Binary Logarithm Algorithm", IEEE Signal
// Processing Mag., pp. 124,140, Sep. 2010.)
long b = 1U << (FRACTIONAL_PLACES - 1);
long y = 0;
long rawX = x.RawValue;
while (rawX < ONE)
{
rawX <<= 1;
y -= ONE;
}
while (rawX >= (ONE << 1))
{
rawX >>= 1;
y += ONE;
}
var z = new Fix64(rawX);
for (int i = 0; i < FRACTIONAL_PLACES; i++)
{
z = FastMul(z, z);
if (z.RawValue >= (ONE << 1))
{
z = new Fix64(z.RawValue >> 1);
y += b;
}
b >>= 1;
}
return new Fix64(y);
}
public static Fix64 Pow(Fix64 b, Fix64 exp)
{
if (b == One)
{
return One;
}
if (exp.RawValue == 0)
{
return One;
}
if (exp.RawValue == ONE)
{
return b;
}
if (b.RawValue == 0)
{
if (exp.RawValue < 0)
{
throw new DivideByZeroException();
}
return Zero;
}
Fix64 log2 = Log2(b);
return Pow2(exp * log2);
}
/// <summary> /// <summary>
/// Returns the square root of the given Fix64 value. /// Returns the square root of the given Fix64 value.