374 lines
12 KiB
C#
374 lines
12 KiB
C#
|
using NUnit.Framework;
|
||
|
using FluentAssertions;
|
||
|
|
||
|
using System;
|
||
|
using System.Linq;
|
||
|
|
||
|
using MoonTools.Core.Graph;
|
||
|
|
||
|
namespace Tests
|
||
|
{
|
||
|
public class DirectedGraphTest
|
||
|
{
|
||
|
[Test]
|
||
|
public void AddVertex()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertex(4);
|
||
|
|
||
|
Assert.That(myGraph.Vertices, Does.Contain(4));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void AddVertices()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(4, 20, 69);
|
||
|
|
||
|
Assert.IsTrue(myGraph.VertexExists(4));
|
||
|
Assert.IsTrue(myGraph.VertexExists(20));
|
||
|
Assert.IsTrue(myGraph.VertexExists(69));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void AddEdge()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(5, 6);
|
||
|
myGraph.AddEdge(5, 6);
|
||
|
|
||
|
Assert.That(myGraph.Neighbors(5), Does.Contain(6));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void AddEdges()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(1, 2, 3, 4);
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(2, 4),
|
||
|
Tuple.Create(3, 4)
|
||
|
);
|
||
|
|
||
|
Assert.That(myGraph.Neighbors(1), Does.Contain(2));
|
||
|
Assert.That(myGraph.Neighbors(2), Does.Contain(3));
|
||
|
Assert.That(myGraph.Neighbors(2), Does.Contain(4));
|
||
|
Assert.That(myGraph.Neighbors(3), Does.Contain(4));
|
||
|
Assert.That(myGraph.Neighbors(1), Does.Not.Contain(4));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void RemoveEdge()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(1, 2, 3, 4);
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(2, 4),
|
||
|
Tuple.Create(3, 4)
|
||
|
);
|
||
|
|
||
|
myGraph.RemoveEdge(2, 3);
|
||
|
|
||
|
Assert.That(myGraph.Neighbors(2), Does.Not.Contain(3));
|
||
|
Assert.That(myGraph.Neighbors(2), Does.Contain(4));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void RemoveVertex()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(1, 2, 3, 4);
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(2, 4),
|
||
|
Tuple.Create(3, 4)
|
||
|
);
|
||
|
|
||
|
myGraph.RemoveVertex(2);
|
||
|
|
||
|
myGraph.Vertices.Should().NotContain(2);
|
||
|
myGraph.Neighbors(1).Should().NotContain(2);
|
||
|
myGraph.Neighbors(3).Should().Contain(4);
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void NodeDFS()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<char>();
|
||
|
myGraph.AddVertices('a', 'b', 'c', 'd');
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create('a', 'b'),
|
||
|
Tuple.Create('a', 'c'),
|
||
|
Tuple.Create('b', 'd')
|
||
|
);
|
||
|
|
||
|
var result = myGraph.NodeDFS();
|
||
|
|
||
|
Assert.That(result['a'][SearchSymbol.start], Is.EqualTo(1));
|
||
|
Assert.That(result['a'][SearchSymbol.finish], Is.EqualTo(8));
|
||
|
|
||
|
Assert.That(result['b'][SearchSymbol.start], Is.EqualTo(2));
|
||
|
Assert.That(result['b'][SearchSymbol.finish], Is.EqualTo(5));
|
||
|
|
||
|
Assert.That(result['c'][SearchSymbol.start], Is.EqualTo(6));
|
||
|
Assert.That(result['c'][SearchSymbol.finish], Is.EqualTo(7));
|
||
|
|
||
|
Assert.That(result['d'][SearchSymbol.start], Is.EqualTo(3));
|
||
|
Assert.That(result['d'][SearchSymbol.finish], Is.EqualTo(4));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void TopologicalSortSimple()
|
||
|
{
|
||
|
var simpleGraph = new DirectedGraph<char>();
|
||
|
simpleGraph.AddVertices('a', 'b', 'c', 'd');
|
||
|
simpleGraph.AddEdges(
|
||
|
Tuple.Create('a', 'b'),
|
||
|
Tuple.Create('a', 'c'),
|
||
|
Tuple.Create('b', 'a'),
|
||
|
Tuple.Create('b', 'd')
|
||
|
);
|
||
|
|
||
|
Assert.That(simpleGraph.TopologicalSort(), Is.EqualTo(new char[] { 'a', 'c', 'b', 'd' }));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void TopologicalSortComplex()
|
||
|
{
|
||
|
var complexGraph = new DirectedGraph<char>();
|
||
|
complexGraph.AddVertices('a', 'b', 'c', 'd', 'e', 'f', 'g', 't', 'm');
|
||
|
complexGraph.AddEdges(
|
||
|
Tuple.Create('a', 'b'),
|
||
|
Tuple.Create('a', 'c'),
|
||
|
Tuple.Create('a', 'd'),
|
||
|
Tuple.Create('b', 'f'),
|
||
|
Tuple.Create('b', 'g'),
|
||
|
Tuple.Create('c', 'g'),
|
||
|
Tuple.Create('e', 't'),
|
||
|
Tuple.Create('t', 'm')
|
||
|
);
|
||
|
|
||
|
Assert.That(
|
||
|
complexGraph.TopologicalSort(),
|
||
|
Is.EqualTo(new char[] { 'e', 't', 'm', 'a', 'd', 'c', 'b', 'g', 'f' })
|
||
|
);
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void StronglyConnectedComponentsSimple()
|
||
|
{
|
||
|
var simpleGraph = new DirectedGraph<int>();
|
||
|
simpleGraph.AddVertices(1, 2, 3);
|
||
|
simpleGraph.AddEdges(
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(3, 2),
|
||
|
Tuple.Create(2, 1)
|
||
|
);
|
||
|
|
||
|
var result = simpleGraph.StronglyConnectedComponents();
|
||
|
var scc = new int[] { 1, 2, 3 };
|
||
|
|
||
|
result.Should().ContainEquivalentOf(scc);
|
||
|
Assert.That(result.Count, Is.EqualTo(1));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void StronglyConnectedComponentsMedium()
|
||
|
{
|
||
|
var mediumGraph = new DirectedGraph<int>();
|
||
|
mediumGraph.AddVertices(1, 2, 3, 4);
|
||
|
mediumGraph.AddEdges(
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(1, 3),
|
||
|
Tuple.Create(1, 4),
|
||
|
Tuple.Create(4, 2),
|
||
|
Tuple.Create(3, 4),
|
||
|
Tuple.Create(2, 3)
|
||
|
);
|
||
|
|
||
|
var result = mediumGraph.StronglyConnectedComponents();
|
||
|
var sccA = new int[] { 2, 3, 4 };
|
||
|
var sccB = new int[] { 1 };
|
||
|
|
||
|
result.Should().ContainEquivalentOf(sccA);
|
||
|
result.Should().ContainEquivalentOf(sccB);
|
||
|
Assert.That(result.Count, Is.EqualTo(2));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void StronglyConnectedComponentsComplex()
|
||
|
{
|
||
|
var complexGraph = new DirectedGraph<int>();
|
||
|
complexGraph.AddVertices(1, 2, 3, 4, 5, 6, 7, 8);
|
||
|
complexGraph.AddEdges(
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(2, 8),
|
||
|
Tuple.Create(3, 4),
|
||
|
Tuple.Create(3, 7),
|
||
|
Tuple.Create(4, 5),
|
||
|
Tuple.Create(5, 3),
|
||
|
Tuple.Create(5, 6),
|
||
|
Tuple.Create(7, 4),
|
||
|
Tuple.Create(7, 6),
|
||
|
Tuple.Create(8, 1),
|
||
|
Tuple.Create(8, 7)
|
||
|
);
|
||
|
|
||
|
var result = complexGraph.StronglyConnectedComponents();
|
||
|
var sccA = new int[] { 3, 4, 5, 7 };
|
||
|
var sccB = new int[] { 1, 2, 8 };
|
||
|
var sccC = new int[] { 6 };
|
||
|
|
||
|
result.Should().ContainEquivalentOf(sccA);
|
||
|
result.Should().ContainEquivalentOf(sccB);
|
||
|
result.Should().ContainEquivalentOf(sccC);
|
||
|
Assert.That(result.Count, Is.EqualTo(3));
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void Clone()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(1, 2, 3, 4);
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create(1, 1),
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(2, 1),
|
||
|
Tuple.Create(3, 4)
|
||
|
);
|
||
|
|
||
|
var clone = myGraph.Clone();
|
||
|
Assert.That(clone, Is.Not.EqualTo(myGraph));
|
||
|
clone.Vertices.Should().BeEquivalentTo(1, 2, 3, 4);
|
||
|
clone.Neighbors(1).Should().BeEquivalentTo(1, 2);
|
||
|
clone.Neighbors(2).Should().BeEquivalentTo(3, 1);
|
||
|
clone.Neighbors(3).Should().BeEquivalentTo(4);
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void SubGraph()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(1, 2, 3, 4);
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create(1, 1),
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(2, 1),
|
||
|
Tuple.Create(3, 4)
|
||
|
);
|
||
|
|
||
|
var subGraph = myGraph.SubGraph(1, 2, 3);
|
||
|
subGraph.Vertices.Should().BeEquivalentTo(1, 2, 3);
|
||
|
subGraph.Neighbors(1).Should().BeEquivalentTo(1, 2);
|
||
|
subGraph.Neighbors(2).Should().BeEquivalentTo(1, 3);
|
||
|
subGraph.Neighbors(3).Should().NotContain(4);
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void SimpleCyclesSimple()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(0, 1, 2);
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create(0, 0),
|
||
|
Tuple.Create(0, 1),
|
||
|
Tuple.Create(0, 2),
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 0),
|
||
|
Tuple.Create(2, 1),
|
||
|
Tuple.Create(2, 2)
|
||
|
);
|
||
|
|
||
|
var result = myGraph.SimpleCycles();
|
||
|
|
||
|
var cycleA = new int[] { 0 };
|
||
|
var cycleB = new int[] { 0, 1, 2 };
|
||
|
var cycleC = new int[] { 0, 2 };
|
||
|
var cycleD = new int[] { 1, 2 };
|
||
|
var cycleE = new int[] { 2 };
|
||
|
|
||
|
result.Should().ContainEquivalentOf(cycleA);
|
||
|
result.Should().ContainEquivalentOf(cycleB);
|
||
|
result.Should().ContainEquivalentOf(cycleC);
|
||
|
result.Should().ContainEquivalentOf(cycleD);
|
||
|
result.Should().ContainEquivalentOf(cycleE);
|
||
|
result.Should().HaveCount(5);
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void SimpleCyclesComplex()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(0, 1, 2, 3, 4, 5, 6, 7, 8, 9);
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create(0, 1),
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(3, 0),
|
||
|
Tuple.Create(0, 3),
|
||
|
Tuple.Create(3, 4),
|
||
|
Tuple.Create(4, 5),
|
||
|
Tuple.Create(5, 0),
|
||
|
Tuple.Create(0, 1),
|
||
|
Tuple.Create(1, 6),
|
||
|
Tuple.Create(6, 7),
|
||
|
Tuple.Create(7, 8),
|
||
|
Tuple.Create(8, 0),
|
||
|
Tuple.Create(8, 9)
|
||
|
);
|
||
|
|
||
|
var result = myGraph.SimpleCycles();
|
||
|
var cycleA = new int[] { 0, 3 };
|
||
|
var cycleB = new int[] { 0, 1, 2, 3, 4, 5 };
|
||
|
var cycleC = new int[] { 0, 1, 2, 3 };
|
||
|
var cycleD = new int[] { 0, 3, 4, 5 };
|
||
|
var cycleE = new int[] { 0, 1, 6, 7, 8 };
|
||
|
|
||
|
result.Should().ContainEquivalentOf(cycleA);
|
||
|
result.Should().ContainEquivalentOf(cycleB);
|
||
|
result.Should().ContainEquivalentOf(cycleC);
|
||
|
result.Should().ContainEquivalentOf(cycleD);
|
||
|
result.Should().ContainEquivalentOf(cycleE);
|
||
|
result.Should().HaveCount(5);
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void Cyclic()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(1, 2, 3, 4);
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(3, 1),
|
||
|
Tuple.Create(3, 4)
|
||
|
);
|
||
|
|
||
|
Assert.That(myGraph.Cyclic(), Is.True);
|
||
|
}
|
||
|
|
||
|
[Test]
|
||
|
public void Acyclic()
|
||
|
{
|
||
|
var myGraph = new DirectedGraph<int>();
|
||
|
myGraph.AddVertices(1, 2, 3, 4);
|
||
|
myGraph.AddEdges(
|
||
|
Tuple.Create(1, 2),
|
||
|
Tuple.Create(2, 3),
|
||
|
Tuple.Create(3, 4)
|
||
|
);
|
||
|
|
||
|
Assert.That(myGraph.Cyclic(), Is.False);
|
||
|
}
|
||
|
}
|
||
|
}
|