#include #include #include #include #include #include "ast.h" #include "identcheck.h" IdNode* MakeIdNode(NodeType type, char *name, IdNode *parent) { IdNode *node = (IdNode*)malloc(sizeof(IdNode)); node->type = type; node->name = strdup(name); node->parent = parent; node->childCount = 0; node->childCapacity = 0; node->children = NULL; node->typeTag = NULL; return node; } void AddChildToNode(IdNode *node, IdNode *child) { if (child == NULL) return; if (node->children == NULL) { node->childCapacity = 2; node->children = (IdNode**)malloc(sizeof(IdNode*) * node->childCapacity); } else if (node->childCount == node->childCapacity) { node->childCapacity *= 2; node->children = realloc(node->children, sizeof(IdNode*) * node->childCapacity); } node->children[node->childCount] = child; node->childCount += 1; } IdNode* MakeIdTree(Node *astNode, IdNode *parent) { uint32_t i; switch (astNode->syntaxKind) { case Assignment: return (astNode->children[0]->syntaxKind == Declaration) ? MakeIdTree(astNode->children[0], parent) : NULL; case IfStatement: { Node *stmtSeq = astNode->children[1]; IdNode *ifNode = MakeIdNode(OrderedScope, "if", parent); for (i = 0; i < stmtSeq->childCount; i++) { AddChildToNode(ifNode, MakeIdTree(stmtSeq->children[i], ifNode)); } return ifNode; } case IfElseStatement: { Node *ifNode = astNode->children[0]; Node *elseStmts = astNode->children[1]; IdNode *ifElseNode = MakeIdNode(OrderedScope, "if-else", parent); IdNode *ifBranch = MakeIdTree(ifNode, ifElseNode); IdNode *elseBranch = MakeIdNode(OrderedScope, "else", ifElseNode); AddChildToNode(ifElseNode, ifBranch); for (i = 0; i < elseStmts->childCount; i++) { AddChildToNode(elseBranch, MakeIdTree(elseStmts->children[i], elseBranch)); } AddChildToNode(ifElseNode, elseBranch); return ifElseNode; } case ForLoop: { Node *loopDecl = astNode->children[0]; Node *loopBody = astNode->children[3]; IdNode *loopNode = MakeIdNode(OrderedScope, "for-loop", parent); AddChildToNode(loopNode, MakeIdTree(loopDecl, loopNode)); for (i = 0; i < loopBody->childCount; i++) { AddChildToNode(loopNode, MakeIdTree(loopBody->children[i], loopNode)); } return loopNode; } case Declaration: { IdNode *declNode = MakeIdNode(Variable, astNode->children[1]->value.string, parent); declNode->typeTag = MakeTypeTag(astNode); return declNode; } case StructDeclaration: { Node *idNode = astNode->children[0]; Node *declsNode = astNode->children[1]; IdNode *structNode = MakeIdNode(Struct, idNode->value.string, parent); structNode->typeTag = MakeTypeTag(astNode); for (i = 0; i < declsNode->childCount; i++) { AddChildToNode(structNode, MakeIdTree(declsNode->children[i], structNode)); } return structNode; } case FunctionDeclaration: { Node *sigNode = astNode->children[0]; Node *funcNameNode = sigNode->children[0]; Node *funcArgsNode = sigNode->children[2]; Node *bodyStatementsNode = astNode->children[1]; IdNode *funcNode = MakeIdNode(Function, funcNameNode->value.string, parent); funcNode->typeTag = MakeTypeTag(astNode); for (i = 0; i < funcArgsNode->childCount; i++) { AddChildToNode(funcNode, MakeIdTree(funcArgsNode->children[i], funcNode)); } for (i = 0; i < bodyStatementsNode->childCount; i++) { AddChildToNode(funcNode, MakeIdTree(bodyStatementsNode->children[i], funcNode)); } return funcNode; } case DeclarationSequence: { IdNode *declSeqNode = MakeIdNode(UnorderedScope, "", parent); for (i = 0; i < astNode->childCount; i++) { AddChildToNode(declSeqNode, MakeIdTree(astNode->children[i], declSeqNode)); } return declSeqNode; } default: return NULL; } } void PrintIdNode(IdNode *node) { if (node == NULL) { fprintf(stderr, "wraith: Attempted to call PrintIdNode with null value.\n"); return; } switch(node->type) { case OrderedScope: printf("OrderedScope (%s)\n", node->name); break; case UnorderedScope: printf("UnorderedScope (%s)\n", node->name); break; case Struct: printf("%s : %s\n", node->name, TypeTagToString(node->typeTag)); break; case Function: printf("%s : Function<%s>\n", node->name, TypeTagToString(node->typeTag)); break; case Variable: printf("%s : %s\n", node->name, TypeTagToString(node->typeTag)); break; } } void PrintIdTree(IdNode *tree, uint32_t tabCount) { if (tree == NULL) { fprintf(stderr, "wraith: Attempted to call PrintIdTree on a null value.\n"); return; } uint32_t i; for (i = 0; i < tabCount; i++) { printf("| "); } PrintIdNode(tree); for (i = 0; i < tree->childCount; i++) { PrintIdTree(tree->children[i], tabCount + 1); } } int PrintAncestors(IdNode *node) { if (node == NULL) return -1; int i; int indent = 1; indent += PrintAncestors(node->parent); for (i = 0; i < indent; i++) { printf(" "); } PrintIdNode(node); return indent; } IdNode* LookdownId(IdNode *root, NodeType targetType, char *targetName) { if (root == NULL) { fprintf(stderr, "wraith: Attempted to call LookdownId on a null value.\n"); return NULL; } IdNode *result = NULL; IdNode **frontier = (IdNode**)malloc(sizeof(IdNode*)); frontier[0] = root; uint32_t frontierCount = 1; while (frontierCount > 0) { IdNode *current = frontier[0]; if (current->type == targetType && strcmp(current->name, targetName) == 0) { result = current; break; } uint32_t i; for(i = 1; i < frontierCount; i++) { frontier[i-1] = frontier[i]; } size_t newSize = frontierCount + current->childCount - 1; if (frontierCount != newSize) { frontier = realloc(frontier, sizeof(IdNode*) * newSize); } for (i = 0; i < current->childCount; i++) { frontier[frontierCount + i - 1] = current->children[i]; } frontierCount = newSize; } free(frontier); return result; } bool ScopeHasOrdering(IdNode *node) { switch (node->type) { case OrderedScope: case Function: case Variable: // this is only technically true return true; default: return false; } } IdNode* LookupId(IdNode *node, IdNode *prev, char *target) { if (node == NULL) { return NULL; } if (strcmp(node->name, target) == 0) { return node; } // If this is the start of our search, we should not attempt to look at child nodes. Only // looking up the scope tree is valid at this point. // // This has the notable side-effect that this function will return NULL if you attempt to look // up a struct's internals starting from the node representing the struct itself. This is // because an IdNode corresponds to the location *where an identifier is first declared.* Thus, // an identifier has no knowledge of identifiers declared "inside" of it. if (prev == NULL) { return LookupId(node->parent, node, target); } uint32_t idxLimit; // If the current node forms an ordered scope then we want to prevent ourselves from looking // up identifiers declared after the scope we have just come from. if (ScopeHasOrdering(node)) { uint32_t i; for (i = 0, idxLimit = 0; i < node->childCount; i++, idxLimit++) { if (node->children[i] == prev) { break; } } } else { idxLimit = node->childCount; } uint32_t i; for (i = 0; i < idxLimit; i++) { IdNode *child = node->children[i]; if (child == prev) { // Do not inspect the node we just came from. continue; } if (strcmp(child->name, target) == 0) { return child; } if (child->type == Struct) { uint32_t j; for (j = 0; j < child->childCount; j++) { IdNode *grandchild = child->children[j]; if (strcmp(grandchild->name, target) == 0) { return grandchild; } } } } return LookupId(node->parent, node, target); }