using MoonWorks.Math.Fixed; namespace MoonWorks.Collision.Fixed { public static class NarrowPhase { private struct Edge { public Fix64 Distance; public Vector2 Normal; public int Index; } public static bool TestCollision(ICollidable collidableA, Transform2D transformA, ICollidable collidableB, Transform2D transformB) { foreach (var shapeA in collidableA.Shapes) { foreach (var shapeB in collidableB.Shapes) { if (TestCollision(shapeA, transformA, shapeB, transformB)) { return true; } } } return false; } public static bool TestCollision(IShape2D shapeA, Transform2D transformA, IShape2D shapeB, Transform2D transformB) { // If we can use a fast path check, let's do that! if (shapeA is Rectangle rectangleA && shapeB is Rectangle rectangleB && transformA.IsAxisAligned && transformB.IsAxisAligned) { return TestRectangleOverlap(rectangleA, transformA, rectangleB, transformB); } else if (shapeA is Point && shapeB is Rectangle && transformB.IsAxisAligned) { return TestPointRectangleOverlap((Point) shapeA, transformA, (Rectangle) shapeB, transformB); } else if (shapeA is Rectangle && shapeB is Point && transformA.IsAxisAligned) { return TestPointRectangleOverlap((Point) shapeB, transformB, (Rectangle) shapeA, transformA); } else if (shapeA is Rectangle && shapeB is Circle && transformA.IsAxisAligned && transformB.IsUniformScale) { return TestCircleRectangleOverlap((Circle) shapeB, transformB, (Rectangle) shapeA, transformA); } else if (shapeA is Circle && shapeB is Rectangle && transformA.IsUniformScale && transformB.IsAxisAligned) { return TestCircleRectangleOverlap((Circle) shapeA, transformA, (Rectangle) shapeB, transformB); } else if (shapeA is Circle && shapeB is Point && transformA.IsUniformScale) { return TestCirclePointOverlap((Circle) shapeA, transformA, (Point) shapeB, transformB); } else if (shapeA is Point && shapeB is Circle && transformB.IsUniformScale) { return TestCirclePointOverlap((Circle) shapeB, transformB, (Point) shapeA, transformA); } else if (shapeA is Circle circleA && shapeB is Circle circleB && transformA.IsUniformScale && transformB.IsUniformScale) { return TestCircleOverlap(circleA, transformA, circleB, transformB); } // Sad, we can't do a fast path optimization. Time for a simplex reduction. return FindCollisionSimplex(shapeA, transformA, shapeB, transformB).Item1; } public static bool TestRectangleOverlap(Rectangle rectangleA, Transform2D transformA, Rectangle rectangleB, Transform2D transformB) { var firstAABB = rectangleA.TransformedAABB(transformA); var secondAABB = rectangleB.TransformedAABB(transformB); return firstAABB.Left < secondAABB.Right && firstAABB.Right > secondAABB.Left && firstAABB.Top < secondAABB.Bottom && firstAABB.Bottom > secondAABB.Top; } public static bool TestPointRectangleOverlap(Point point, Transform2D pointTransform, Rectangle rectangle, Transform2D rectangleTransform) { var transformedPoint = pointTransform.Position; var AABB = rectangle.TransformedAABB(rectangleTransform); return transformedPoint.X > AABB.Left && transformedPoint.X < AABB.Right && transformedPoint.Y < AABB.Bottom && transformedPoint.Y > AABB.Top; } public static bool TestCirclePointOverlap(Circle circle, Transform2D circleTransform, Point point, Transform2D pointTransform) { var circleCenter = circleTransform.Position; var circleRadius = circle.Radius * circleTransform.Scale.X; var distanceX = circleCenter.X - pointTransform.Position.X; var distanceY = circleCenter.Y - pointTransform.Position.Y; return (distanceX * distanceX) + (distanceY * distanceY) < (circleRadius * circleRadius); } /// /// NOTE: The rectangle must be axis aligned, and the scaling of the circle must be uniform. /// public static bool TestCircleRectangleOverlap(Circle circle, Transform2D circleTransform, Rectangle rectangle, Transform2D rectangleTransform) { var circleCenter = circleTransform.Position; var circleRadius = circle.Radius * circleTransform.Scale.X; var AABB = rectangle.TransformedAABB(rectangleTransform); var closestX = Fix64.Clamp(circleCenter.X, AABB.Left, AABB.Right); var closestY = Fix64.Clamp(circleCenter.Y, AABB.Top, AABB.Bottom); var distanceX = circleCenter.X - closestX; var distanceY = circleCenter.Y - closestY; var distanceSquared = (distanceX * distanceX) + (distanceY * distanceY); return distanceSquared < (circleRadius * circleRadius); } public static bool TestCircleOverlap(Circle circleA, Transform2D transformA, Circle circleB, Transform2D transformB) { var radiusA = circleA.Radius * transformA.Scale.X; var radiusB = circleB.Radius * transformB.Scale.Y; var centerA = transformA.Position; var centerB = transformB.Position; var distanceSquared = (centerA - centerB).LengthSquared(); var radiusSumSquared = (radiusA + radiusB) * (radiusA + radiusB); return distanceSquared < radiusSumSquared; } public static (bool, Simplex2D) FindCollisionSimplex(IShape2D shapeA, Transform2D transformA, IShape2D shapeB, Transform2D transformB) { var minkowskiDifference = new MinkowskiDifference(shapeA, transformA, shapeB, transformB); var c = minkowskiDifference.Support(Vector2.UnitX); var b = minkowskiDifference.Support(-Vector2.UnitX); return Check(minkowskiDifference, c, b); } public unsafe static Vector2 Intersect(IShape2D shapeA, Transform2D Transform2DA, IShape2D shapeB, Transform2D Transform2DB, Simplex2D simplex) { if (shapeA == null) { throw new System.ArgumentNullException(nameof(shapeA)); } if (shapeB == null) { throw new System.ArgumentNullException(nameof(shapeB)); } if (!simplex.TwoSimplex) { throw new System.ArgumentException("Simplex must be a 2-Simplex.", nameof(simplex)); } var epsilon = Fix64.FromFraction(1, 10000); var a = simplex.A; var b = simplex.B.Value; var c = simplex.C.Value; Vector2 intersection = default; for (var i = 0; i < 32; i++) { var edge = FindClosestEdge(simplex); var support = CalculateSupport(shapeA, Transform2DA, shapeB, Transform2DB, edge.Normal); var distance = Vector2.Dot(support, edge.Normal); intersection = edge.Normal; intersection *= distance; if (Fix64.Abs(distance - edge.Distance) <= epsilon) { return intersection; } else { simplex.Insert(support, edge.Index); } } return intersection; // close enough } private static unsafe Edge FindClosestEdge(Simplex2D simplex) { var closestDistance = Fix64.MaxValue; var closestNormal = Vector2.Zero; var closestIndex = 0; for (var i = 0; i < 4; i += 1) { var j = (i + 1 == 3) ? 0 : i + 1; var a = simplex[i]; var b = simplex[j]; var e = b - a; var oa = a; var n = Vector2.Normalize(TripleProduct(e, oa, e)); var d = Vector2.Dot(n, a); if (d < closestDistance) { closestDistance = d; closestNormal = n; closestIndex = j; } } return new Edge { Distance = closestDistance, Normal = closestNormal, Index = closestIndex }; } private static Vector2 CalculateSupport(IShape2D shapeA, Transform2D Transform2DA, IShape2D shapeB, Transform2D Transform2DB, Vector2 direction) { return shapeA.Support(direction, Transform2DA) - shapeB.Support(-direction, Transform2DB); } private static (bool, Simplex2D) Check(MinkowskiDifference minkowskiDifference, Vector2 c, Vector2 b) { var cb = c - b; var c0 = -c; var d = Direction(cb, c0); return DoSimplex(minkowskiDifference, new Simplex2D(b, c), d); } private static (bool, Simplex2D) DoSimplex(MinkowskiDifference minkowskiDifference, Simplex2D simplex, Vector2 direction) { var a = minkowskiDifference.Support(direction); var notPastOrigin = Vector2.Dot(a, direction) < Fix64.Zero; var (intersects, newSimplex, newDirection) = EnclosesOrigin(a, simplex); if (notPastOrigin) { return (false, default(Simplex2D)); } else if (intersects) { return (true, new Simplex2D(simplex.A, simplex.B.Value, a)); } else { return DoSimplex(minkowskiDifference, newSimplex, newDirection); } } private static (bool, Simplex2D, Vector2) EnclosesOrigin(Vector2 a, Simplex2D simplex) { if (simplex.ZeroSimplex) { return HandleZeroSimplex(a, simplex.A); } else if (simplex.OneSimplex) { return HandleOneSimplex(a, simplex.A, simplex.B.Value); } else { return (false, simplex, Vector2.Zero); } } private static (bool, Simplex2D, Vector2) HandleZeroSimplex(Vector2 a, Vector2 b) { var ab = b - a; var a0 = -a; var (newSimplex, newDirection) = SameDirection(ab, a0) ? (new Simplex2D(a, b), Perpendicular(ab, a0)) : (new Simplex2D(a), a0); return (false, newSimplex, newDirection); } private static (bool, Simplex2D, Vector2) HandleOneSimplex(Vector2 a, Vector2 b, Vector2 c) { var a0 = -a; var ab = b - a; var ac = c - a; var abp = Perpendicular(ab, -ac); var acp = Perpendicular(ac, -ab); if (SameDirection(abp, a0)) { if (SameDirection(ab, a0)) { return (false, new Simplex2D(a, b), abp); } else { return (false, new Simplex2D(a), a0); } } else if (SameDirection(acp, a0)) { if (SameDirection(ac, a0)) { return (false, new Simplex2D(a, c), acp); } else { return (false, new Simplex2D(a), a0); } } else { return (true, new Simplex2D(b, c), a0); } } private static Vector2 TripleProduct(Vector2 a, Vector2 b, Vector2 c) { var A = new Vector3(a.X, a.Y, Fix64.Zero); var B = new Vector3(b.X, b.Y, Fix64.Zero); var C = new Vector3(c.X, c.Y, Fix64.Zero); var first = Vector3.Cross(A, B); var second = Vector3.Cross(first, C); return new Vector2(second.X, second.Y); } private static Vector2 Direction(Vector2 a, Vector2 b) { var d = TripleProduct(a, b, a); var collinear = d == Vector2.Zero; return collinear ? new Vector2(a.Y, -a.X) : d; } private static bool SameDirection(Vector2 a, Vector2 b) { return Vector2.Dot(a, b) > Fix64.Zero; } private static Vector2 Perpendicular(Vector2 a, Vector2 b) { return TripleProduct(a, b, a); } } }