#include "Macros.fxh" //from FNA static const float PI = 3.141592653589793; // Transformation Matrices float4x4 World; float4x4 View; float4x4 Projection; float4x4 WorldViewProjection; float4x3 WorldInverseTranspose; // Samplers DECLARE_TEXTURE(BaseColorTexture, 0); DECLARE_TEXTURE(NormalTexture, 1); DECLARE_TEXTURE(EmissionTexture, 2); DECLARE_TEXTURE(OcclusionTexture, 3); DECLARE_TEXTURE(MetallicRoughnessTexture, 4); DECLARE_CUBEMAP(EnvDiffuseTexture, 8); DECLARE_TEXTURE(BrdfLutTexture, 9); DECLARE_CUBEMAP(EnvSpecularTexture, 10); // Light Info float3 LightPositions[4]; float3 LightColors[4]; // PBR Values float3 Albedo; float Metallic; float Roughness; float AO; float3 EyePosition; struct VertexShaderInput { float4 Position : POSITION; float3 Normal : NORMAL; float2 TexCoord : TEXCOORD0; }; struct PixelShaderInput { float4 Position : SV_POSITION; float2 TexCoord : TEXCOORD0; float3 PositionWS : TEXCOORD1; float3 NormalWS : TEXCOORD2; }; PixelShaderInput main_vs(VertexShaderInput input) { PixelShaderInput output; output.PositionWS = mul(input.Position, World).xyz; output.TexCoord = input.TexCoord; output.NormalWS = normalize(mul(WorldInverseTranspose, input.Normal)); output.Position = mul(input.Position, WorldViewProjection); return output; } float3 FresnelSchlick(float cosTheta, float3 F0) { return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); } float DistributionGGX(float3 N, float3 H, float roughness) { float a = roughness * roughness; float a2 = a * a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH * NdotH; float num = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return num / denom; } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r * r) / 8.0; float num = NdotV; float denom = NdotV * (1.0 - k) + k; return num / denom; } float GeometrySmith(float3 N, float3 V, float3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } // The case where we have no texture maps for any PBR data float4 None(PixelShaderInput input) : SV_TARGET { float3 N = normalize(input.NormalWS); float3 V = normalize(EyePosition - input.PositionWS); float3 Lo = float3(0.0, 0.0, 0.0); for (int i = 0; i < 4; i++) { float3 lightDir = LightPositions[i] - input.PositionWS; float3 L = normalize(lightDir); float3 H = normalize(V + L); float distance = length(lightDir); float attenuation = 1.0 / (distance * distance); float3 radiance = LightColors[i] * attenuation; float3 F0 = float3(0.04, 0.04, 0.04); F0 = lerp(F0, Albedo, Metallic); float3 F = FresnelSchlick(max(dot(H, V), 0.0), F0); float NDF = DistributionGGX(N, H, Roughness); float G = GeometrySmith(N, V, L, Roughness); float3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0); float3 specular = numerator / max(denominator, 0.001); float3 kS = F; float3 kD = float3(1.0, 1.0, 1.0) - kS; kD *= 1.0 - Metallic; float NdotL = max(dot(N, L), 0.0); Lo += (kD * Albedo / PI + specular) * radiance * NdotL; } float3 ambient = float3(0.03, 0.03, 0.03) * Albedo * AO; float3 color = ambient + Lo; color = color / (color + float3(1.0, 1.0, 1.0)); float exposureConstant = 1.0 / 2.2; color = pow(color, float3(exposureConstant, exposureConstant, exposureConstant)); return float4(color, 1.0); } Technique PBR { Pass Pass1 { VertexShader = compile vs_3_0 main_vs(); PixelShader = compile ps_3_0 None(); } }