using MoonTools.Core.Structs; using System; using System.Collections.Generic; using System.Numerics; namespace MoonTools.Core.Bonk { public static class NarrowPhase { private enum PolygonWinding { Clockwise, CounterClockwise } public static bool TestCollision(ICollisionTestable a, ICollisionTestable b) where T : struct, IShape2D where U : struct, IShape2D { foreach (var shape in a.TransformedShapes) { foreach (var shapeB in b.TransformedShapes) { return TestCollision(shape, shapeB); } } return false; } /// /// Tests if two shape-transform pairs are overlapping. /// public static bool TestCollision(T shape, Transform2D transform, U shapeB, Transform2D transformB) where T : struct, IShape2D where U : struct, IShape2D { return TestCollision(new TransformedShape2D(shape, transform), new TransformedShape2D(shapeB, transformB)); } /// /// Tests if two TransformedShapes are overlapping. /// /// /// /// /// /// public static bool TestCollision(TransformedShape2D transformedShapeA, TransformedShape2D transformedShapeB) where T : struct, IShape2D where U : struct, IShape2D { return FindCollisionSimplex(transformedShapeA, transformedShapeB).Item1; } /// /// Tests if a multishape-transform and shape-transform pair are overlapping. /// Note that this must perform pairwise comparison so the worst-case performance of this method will vary inversely with the amount of shapes in the multishape. /// /// /// /// /// public static bool TestCollision(MultiShape multiShape, Transform2D multiShapeTransform, TransformedShape2D shape) where T : struct, IShape2D where U : struct, IShape2D { foreach (var transformedShape in multiShape.Compose(multiShapeTransform)) { if (TestCollision(shape, transformedShape)) { return true; } } return false; } public static bool TestCollison(IEnumerable> transformedShapes, Transform2D multiShapeTransform, TransformedShape2D shape) where T : struct, IShape2D where U : struct, IShape2D { foreach (var transformedShape in transformedShapes) { if (TestCollision(transformedShape.Compose(multiShapeTransform), shape)) { return true; } } return false; } /// /// Tests if a multishape-transform and shape-transform pair are overlapping. /// Note that this must perform pairwise comparison so the worst-case performance of this method will vary inversely with the amount of shapes in the multishape. /// /// /// /// /// public static bool TestCollision(TransformedShape2D shape, MultiShape multiShape, Transform2D multiShapeTransform) where T : struct, IShape2D where U : struct, IShape2D { return TestCollision(multiShape, multiShapeTransform, shape); } /// /// Tests if two multishape-transform pairs are overlapping. /// Note that this must perform pairwise comparison so the worst-case performance of this method will vary inversely with the amount of shapes in the multishapes. /// /// /// /// /// /// public static bool TestCollision(MultiShape multiShapeA, Transform2D transformA, MultiShape multiShapeB, Transform2D transformB) where T : struct, IShape2D where U : struct, IShape2D { foreach (var transformedShapeA in multiShapeA.Compose(transformA)) { foreach (var transformedShapeB in multiShapeB.Compose(transformB)) { if (TestCollision(transformedShapeA, transformedShapeB)) { return true; } } } return false; } /// /// Fast path for axis-aligned rectangles. If the transforms have non-zero rotation this will be inaccurate. /// /// /// /// public static bool TestCollision(TransformedShape2D rectangleA, TransformedShape2D rectangleB) { var firstAABB = rectangleA.AABB; var secondAABB = rectangleB.AABB; return firstAABB.Left <= secondAABB.Right && firstAABB.Right >= secondAABB.Left && firstAABB.Top <= secondAABB.Bottom && firstAABB.Bottom >= secondAABB.Top; } /// /// Fast path for overlapping point and axis-aligned rectangle. The rectangle transform must have non-zero rotation. /// /// /// /// public static bool TestCollision(TransformedShape2D point, TransformedShape2D rectangle) { var transformedPoint = point.Transform.Position; var AABB = rectangle.AABB; return transformedPoint.X >= AABB.Left && transformedPoint.X <= AABB.Right && transformedPoint.Y <= AABB.Bottom && transformedPoint.Y >= AABB.Top; } public static bool TestCollision(TransformedShape2D rectangle, TransformedShape2D point) { return TestCollision(point, rectangle); } /// /// Fast path for overlapping circles. The circles must have uniform scaling. /// /// /// /// public static bool TestCollision(TransformedShape2D circleA, TransformedShape2D circleB) { var radiusA = circleA.Shape.Radius * circleA.Transform.Scale.X; var radiusB = circleB.Shape.Radius * circleB.Transform.Scale.Y; var centerA = circleA.Transform.Position; var centerB = circleB.Transform.Position; var distanceSquared = (centerA - centerB).LengthSquared(); var radiusSumSquared = (radiusA + radiusB) * (radiusA + radiusB); return distanceSquared <= radiusSumSquared; } /// /// Tests if the two shape-transform pairs are overlapping, and returns a simplex that can be used by the EPA algorithm to determine a miminum separating vector. /// public static (bool, Simplex2D) FindCollisionSimplex(TransformedShape2D shapeA, TransformedShape2D shapeB) where T : struct, IShape2D where U : struct, IShape2D { var minkowskiDifference = new MinkowskiDifference(shapeA, shapeB); var c = minkowskiDifference.Support(Vector2.UnitX); var b = minkowskiDifference.Support(-Vector2.UnitX); return Check(minkowskiDifference, c, b); } /// /// Returns a minimum separating vector in the direction from A to B. /// /// A simplex returned by the GJK algorithm. public unsafe static Vector2 Intersect(TransformedShape2D shapeA, TransformedShape2D shapeB, Simplex2D simplex) where T : struct, IShape2D where U : struct, IShape2D { if (shapeA == null) { throw new System.ArgumentNullException(nameof(shapeA)); } if (shapeB == null) { throw new System.ArgumentNullException(nameof(shapeB)); } if (!simplex.TwoSimplex) { throw new System.ArgumentException("Simplex must be a 2-Simplex.", nameof(simplex)); } var a = simplex.A; var b = simplex.B.Value; var c = simplex.C.Value; var e0 = (b.X - a.X) * (b.Y + a.Y); var e1 = (c.X - b.X) * (c.Y + b.Y); var e2 = (a.X - c.X) * (a.Y + c.Y); var winding = e0 + e1 + e2 >= 0 ? PolygonWinding.Clockwise : PolygonWinding.CounterClockwise; var simplexVertices = new SimplexVertexBuffer(simplex.Vertices); Vector2 intersection = default; for (var i = 0; i < 32; i++) { var edge = FindClosestEdge(winding, simplexVertices); var support = CalculateSupport(shapeA, shapeB, edge.normal); var distance = Vector2.Dot(support, edge.normal); intersection = edge.normal; intersection *= distance; if (System.Math.Abs(distance - edge.distance) <= float.Epsilon) { return intersection; } else { simplexVertices.Insert(edge.index, support); } } return intersection; } private static Edge FindClosestEdge(PolygonWinding winding, SimplexVertexBuffer simplexVertices) { var closestDistance = float.PositiveInfinity; var closestNormal = Vector2.Zero; var closestIndex = 0; for (var i = 0; i < simplexVertices.Length; i++) { var j = i + 1; if (j >= simplexVertices.Length) { j = 0; } var edge = simplexVertices[j] - simplexVertices[i]; Vector2 norm; if (winding == PolygonWinding.Clockwise) { norm = Vector2.Normalize(new Vector2(edge.Y, -edge.X)); } else { norm = Vector2.Normalize(new Vector2(-edge.Y, edge.X)); } var dist = Vector2.Dot(norm, simplexVertices[i]); if (dist < closestDistance) { closestDistance = dist; closestNormal = norm; closestIndex = j; } } return new Edge(closestDistance, closestNormal, closestIndex); } private static Vector2 CalculateSupport(TransformedShape2D shapeA, TransformedShape2D shapeB, Vector2 direction) where T : struct, IShape2D where U : struct, IShape2D { return shapeA.Support(direction) - shapeB.Support(-direction); } private static (bool, Simplex2D) Check(MinkowskiDifference minkowskiDifference, Vector2 c, Vector2 b) where T : struct, IShape2D where U : struct, IShape2D { var cb = c - b; var c0 = -c; var d = Direction(cb, c0); return DoSimplex(minkowskiDifference, new Simplex2D(b, c), d); } private static (bool, Simplex2D) DoSimplex(MinkowskiDifference minkowskiDifference, Simplex2D simplex, Vector2 direction) where T : struct, IShape2D where U : struct, IShape2D { var a = minkowskiDifference.Support(direction); var notPastOrigin = Vector2.Dot(a, direction) < 0; var (intersects, newSimplex, newDirection) = EnclosesOrigin(a, simplex); if (notPastOrigin) { return (false, default(Simplex2D)); } else if (intersects) { return (true, new Simplex2D(simplex.A, simplex.B.Value, a)); } else { return DoSimplex(minkowskiDifference, newSimplex, newDirection); } } private static (bool, Simplex2D, Vector2) EnclosesOrigin(Vector2 a, Simplex2D simplex) { if (simplex.ZeroSimplex) { return HandleZeroSimplex(a, simplex.A); } else if (simplex.OneSimplex) { return HandleOneSimplex(a, simplex.A, simplex.B.Value); } else { return (false, simplex, Vector2.Zero); } } private static (bool, Simplex2D, Vector2) HandleZeroSimplex(Vector2 a, Vector2 b) { var ab = b - a; var a0 = -a; var (newSimplex, newDirection) = SameDirection(ab, a0) ? (new Simplex2D(a, b), Perpendicular(ab, a0)) : (new Simplex2D(a), a0); return (false, newSimplex, newDirection); } private static (bool, Simplex2D, Vector2) HandleOneSimplex(Vector2 a, Vector2 b, Vector2 c) { var a0 = -a; var ab = b - a; var ac = c - a; var abp = Perpendicular(ab, -ac); var acp = Perpendicular(ac, -ab); if (SameDirection(abp, a0)) { if (SameDirection(ab, a0)) { return (false, new Simplex2D(a, b), abp); } else { return (false, new Simplex2D(a), a0); } } else if (SameDirection(acp, a0)) { if (SameDirection(ac, a0)) { return (false, new Simplex2D(a, c), acp); } else { return (false, new Simplex2D(a), a0); } } else { return (true, new Simplex2D(b, c), a0); } } private static Vector2 TripleProduct(Vector2 a, Vector2 b, Vector2 c) { var A = new Vector3(a.X, a.Y, 0); var B = new Vector3(b.X, b.Y, 0); var C = new Vector3(c.X, c.Y, 0); var first = Vector3.Cross(A, B); var second = Vector3.Cross(first, C); return new Vector2(second.X, second.Y); } private static Vector2 Direction(Vector2 a, Vector2 b) { var d = TripleProduct(a, b, a); var collinear = d == Vector2.Zero; return collinear ? new Vector2(a.Y, -a.X) : d; } private static bool SameDirection(Vector2 a, Vector2 b) { return Vector2.Dot(a, b) > 0; } private static Vector2 Perpendicular(Vector2 a, Vector2 b) { return TripleProduct(a, b, a); } } }