#include "Macros.fxh" //from FNA static const float PI = 3.141592653589793; static const int MAX_POINT_LIGHTS = 64; static const int NUM_SHADOW_CASCADES = 4; DECLARE_TEXTURE(gPosition, 0); DECLARE_TEXTURE(gAlbedo, 1); DECLARE_TEXTURE(gNormal, 2); DECLARE_TEXTURE(gMetallicRoughness, 3); DECLARE_TEXTURE(shadowMapOne, 4); DECLARE_TEXTURE(shadowMapTwo, 5); DECLARE_TEXTURE(shadowMapThree, 6); DECLARE_TEXTURE(shadowMapFour, 7); BEGIN_CONSTANTS float3 EyePosition _ps(c0) _cb(c0); float3 PointLightPositions[MAX_POINT_LIGHTS] _ps(c1) _cb(c1); float3 PointLightColors[MAX_POINT_LIGHTS] _ps(c65) _cb(c65); float3 DirectionalLightDirection _ps(c129) _cb(c129); float3 DirectionalLightColor _ps(c130) _cb(c130); float CascadeFarPlanes[NUM_SHADOW_CASCADES] _ps(c131) _cb(c131); MATRIX_CONSTANTS float4x4 LightSpaceMatrixOne _ps(c135) _cb(c135); float4x4 LightSpaceMatrixTwo _ps(c139) _cb(c139); float4x4 LightSpaceMatrixThree _ps(c143) _cb(c143); float4x4 LightSpaceMatrixFour _ps(c147) _cb(c147); // used to select shadow cascade float4x4 ViewMatrix _ps(c151) _cb(c151); END_CONSTANTS struct VertexInput { float4 Position : POSITION; float2 TexCoord : TEXCOORD; }; struct PixelInput { float4 Position : SV_POSITION; float2 TexCoord : TEXCOORD0; }; PixelInput main_vs(VertexInput input) { PixelInput output; output.Position = input.Position; output.TexCoord = input.TexCoord; return output; } // Pixel Shader float3 FresnelSchlick(float cosTheta, float3 F0) { return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); } float DistributionGGX(float3 N, float3 H, float roughness) { float a = roughness * roughness; float a2 = a * a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH * NdotH; float num = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return num / denom; } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r * r) / 8.0; float num = NdotV; float denom = NdotV * (1.0 - k) + k; return num / denom; } float GeometrySmith(float3 N, float3 V, float3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } float ComputeShadow(float3 positionWorldSpace, float3 N, float L) { float bias = 0.005 * tan(acos(dot(N, L))); bias = clamp(bias, 0, 0.01); float4 positionCameraSpace = mul(float4(positionWorldSpace, 1.0), ViewMatrix); int shadowCascadeIndex = 0; // 0 is closest for (int i = 0; i < NUM_SHADOW_CASCADES; i++) { if (abs(positionCameraSpace.z) < CascadeFarPlanes[i]) { shadowCascadeIndex = i; break; } } float4x4 lightSpaceMatrix; if (shadowCascadeIndex == 0) { lightSpaceMatrix = LightSpaceMatrixOne; } else if (shadowCascadeIndex == 1) { lightSpaceMatrix = LightSpaceMatrixTwo; } else if (shadowCascadeIndex == 2) { lightSpaceMatrix = LightSpaceMatrixThree; } else { lightSpaceMatrix = LightSpaceMatrixFour; } float4 positionLightSpace = mul(float4(positionWorldSpace, 1.0), lightSpaceMatrix); // maps to [-1, 1] float3 projectionCoords = positionLightSpace.xyz / positionLightSpace.w; // maps to [0, 1] projectionCoords.x = (projectionCoords.x * 0.5) + 0.5; projectionCoords.y = (projectionCoords.y * 0.5) + 0.5; projectionCoords.y *= -1; // in XNA clip z is 0 to 1 already float inc = 1.0 / 1024.0; float shadowFactor = 0; for (int row = -1; row <= 1; row++) { for (int col = -1; col <= 1; col++) { float closestDepth; if (shadowCascadeIndex == 0) { closestDepth = SAMPLE_TEXTURE(shadowMapOne, projectionCoords.xy + float2(row, col) * inc).r; } else if (shadowCascadeIndex == 1) { closestDepth = SAMPLE_TEXTURE(shadowMapTwo, projectionCoords.xy + float2(row, col) * inc).r; } else if (shadowCascadeIndex == 2) { closestDepth = SAMPLE_TEXTURE(shadowMapThree, projectionCoords.xy + float2(row, col) * inc).r; } else { closestDepth = SAMPLE_TEXTURE(shadowMapFour, projectionCoords.xy + float2(row, col) * inc).r; } shadowFactor += projectionCoords.z - bias > closestDepth ? 1.0 : 0.0; } } shadowFactor /= 9.0; if (projectionCoords.z > 1.0) { shadowFactor = 1.0; } return shadowFactor; // float currentDepth = projectionCoords.z; // if (currentDepth > 1.0) // { // return 0.0; // } // if (currentDepth - bias > closestDepth) // { // return 1.0; // } // else // { // return 0.0; // } } float3 ComputeLight( float3 L, float3 radiance, float3 F0, float3 V, float3 N, float3 albedo, float metallic, float roughness, float shadow ) { float3 H = normalize(V + L); float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); float3 F = FresnelSchlick(max(dot(H, V), 0.0), F0); float3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0); float3 specular = numerator / max(denominator, 0.001); float3 kS = F; float3 kD = float3(1.0, 1.0, 1.0) - kS; kD *= 1.0 - metallic; float NdotL = max(dot(N, L), 0.0); return (kD * albedo / PI + specular) * radiance * NdotL * shadow; } float4 ComputeColor( float3 worldPosition, float3 worldNormal, float3 albedo, float metallic, float roughness ) { float3 V = normalize(EyePosition - worldPosition); float3 N = normalize(worldNormal); float3 F0 = float3(0.04, 0.04, 0.04); F0 = lerp(F0, albedo, metallic); float3 Lo = float3(0.0, 0.0, 0.0); // point light for (int i = 0; i < MAX_POINT_LIGHTS; i++) { float3 lightDir = PointLightPositions[i] - worldPosition; float3 L = normalize(lightDir); float distance = length(lightDir); float attenuation = 1.0 / (distance * distance); float3 radiance = PointLightColors[i] * attenuation; Lo += ComputeLight(L, radiance, F0, V, N, albedo, metallic, roughness, 1.0); } // directional light float3 L = normalize(DirectionalLightDirection); float3 radiance = DirectionalLightColor; float shadow = ComputeShadow(worldPosition, N, L); Lo += ComputeLight(L, radiance, F0, V, N, albedo, metallic, roughness, (1.0 - shadow)); float3 ambient = float3(0.03, 0.03, 0.03) * albedo; // * AO; float3 color = ambient + Lo; color = color / (color + float3(1.0, 1.0, 1.0)); float exposureConstant = 1.0 / 2.2; color = pow(color, float3(exposureConstant, exposureConstant, exposureConstant)); return float4(color, 1.0); } float4 main_ps(PixelInput input) : SV_TARGET0 { float3 worldPosition = SAMPLE_TEXTURE(gPosition, input.TexCoord).rgb; float3 normal = SAMPLE_TEXTURE(gNormal, input.TexCoord).xyz; float3 albedo = SAMPLE_TEXTURE(gAlbedo, input.TexCoord).rgb; float2 metallicRoughness = SAMPLE_TEXTURE(gMetallicRoughness, input.TexCoord).rg; return ComputeColor( worldPosition, normal, albedo, metallicRoughness.r, metallicRoughness.g ); } Technique DeferredPBR { Pass { VertexShader = compile vs_3_0 main_vs(); PixelShader = compile ps_3_0 main_ps(); } }